scholarly journals Biaxial estimation of biomechanical constitutive parameters of passive porcine sclera soft tissue

2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.

Author(s):  
Chen Xin ◽  
Qin Ye ◽  
Yuan Xiguang ◽  
Zhang Ping ◽  
Sun Jian

Abstract According to the real situation, a new method of updating the finite element model (FEM) of a combined structure step by step is proposed in this paper. It is assumed that there are two types of error when establishing the FEMs. One of them results from the simplifications, in fact, it is severe for complicated structures, which usually assume many simplifications; the other is from the process of identifying structural joint parameters. For this reason, it is recommended that the FEM should be established in two stages. At the first stage, the local physical parameters relating with the simplifications are corrected by using the dynamic test data of the corresponding substructures. Then, the structural joint parameters that link the substructures are corrected by the dynamic test data of the combined structure as a whole. The updating formula is presented and proved, and its algorithm is also described. And the experimental results show that the efficiency and accuracy of the proposed method are quite satisfactory.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


Author(s):  
Stefan Lammens ◽  
Marc Brughmans ◽  
Jan Leuridan ◽  
Ward Heylen ◽  
Paul Sas

Abstract This paper presents two applications of the RADSER model updating technique (Lammens et al. (1995) and Larsson (1992)). The RADSER technique updates finite element model parameters by solution of a linearised set of equations that optimise the Reduced Analytical Dynamic Stiffness matrix based on Experimental Receptances. The first application deals with the identification of the dynamic characteristics of rubber mounts. The second application validates a coarse finite element model of a subframe of a Volvo 480.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850084 ◽  
Author(s):  
Clément Touzeau ◽  
Benoit Magnain ◽  
Quentin Serra ◽  
Éric Florentin

We study the accuracy and the robustness of the Geometrical Finite Element Model Updating method proposed in Touzeau et al. [Touzeau, C., Magnain, B., Emile, B., Laurent, H. and Florentin, E. (2016) “Identification in transient dynamic using a geometry-based cost function in finite element model updating method,” Finite Elements Anal. Des. 122, 49–60]. In this work, the method is applied to transient dynamic in finite transformations to identify mechanical material parameters. A stochastic approach is performed to determine accuracy and robustness. The method is illustrated on numerical test cases and compared to a classical FEMU method. Uncertainties on the loading are taken into account in the identification using an original approach.


Author(s):  
Mostafa Habibi ◽  
Ramin Hashemi ◽  
Ahmad Ghazanfari ◽  
Reza Naghdabadi ◽  
Ahmad Assempour

Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient with less than 10% at the lower level of the experimental forming limit diagram.


2013 ◽  
Vol 639-640 ◽  
pp. 992-997 ◽  
Author(s):  
Jian Ping Han ◽  
Yong Peng Luo

Using the static and dynamic test data simultaneously to update the finite element model can increase the available information for updating. It can overcome the disadvantages of updating based on static or dynamic test data only. In this paper, the response surface method is adopted to update the finite element model of the structure based on the static and dynamic test. Using the reasonable experiment design and regression techniques, a response surface model is formulated to approximate the relationships between the parameters and response values instead of the initial finite element model for further updating. First, a numerical example of a reinforced concrete simply supported beam is used to demonstrate the feasibility of this approach. Then, this approach is applied to update the finite element model of a prestressed reinforced concrete rigid frame-continuous girders bridge based on in-situ static and dynamic test data. Results show that this approach works well and achieve reasonable physical explanations for the updated parameters. The results from the updated model are in good agreement with the results from the in-situ measurement. The updated finite element model can accurately represent mechanical properties of the bridge and it can serve as a benchmark model for further damage detection and condition assessment of the bridge.


2011 ◽  
Vol 66-68 ◽  
pp. 983-988
Author(s):  
M. Liu ◽  
Q.H. Zhang ◽  
L.Y. Gao ◽  
Xue Mei Qin

Needle biopsy is a widely used medical procedure in which a tissue sample is cut and removed by needle for examination to identify and diagnose cancer and other diseases. Predictions of soft tissue deformation and reaction caused by needle insertion are important for the accuracy of this procedure. In this paper, in order to aquire the properties of soft tissue, indentation experiments of porcine livers are performed as non-invasive test to measure the force response depending on time in various indentation depth and indentation velocities conditions. A nonlinear least square method on Matlab have been created to fit the indentation results. According to the experimental and fitting indentation force-time curves, the coefficients of Neo-Hookean model and Kelvin model which are selected to develop the nonlinear model of porcine liver are acquired . Finally, a finite element model of liver based on experimental data is finally developed and succeeds in simulating the stress relaxation character and force-time curve. This finite element model and methodology can be used to investigate soft tissue reaction in needle biopsy.


Sign in / Sign up

Export Citation Format

Share Document