scholarly journals The shear buckling and postbuckling behavior of laterally pressured curved panels

2019 ◽  
Author(s):  
Mohammad Mehdi Alinia ◽  
Arash Saeidpour ◽  
Mozhdeh Amani

Curved panels are widely used in different structures from fuselage of planes to curved bridge girders. An accurate understanding of buckling and postbuckling behavior of curved panels under different loadings is essential for efficient structural design. The shear buckling and postbuckling behavior of laterally pressured thin curved panels under gradually increasing in-plane shear forces is investigated. The magnitude of the lateral forces, the radius of curvature and the aspect ratio of panels are considered in the parametric studies. A classic theoretical formulation of curved panels buckling load is reexamined and compared to experimental results. The results showed that inward pressure eliminates the snap-through phenomenon and the softening stage in the response of shallow curved panels. However, the buckling characteristics are not significantly affected in the moderately curved panels under small pressures. In addition, the magnitude of inward pressures that would affect the shear buckling and postbuckling behavior of panels depends on their radius of curvature. The ultimate shear capacity of a highly curved panel is considerably reduced due to the increasing presence of inward pressures. The failure mode of highly curved panels are associated with the occurrence of unstable buckling; and as a result, the released strain energy prevents the occurrence of hardening stages.

1983 ◽  
Vol 18 (2) ◽  
pp. 111-117 ◽  
Author(s):  
R Narayanan ◽  
D Adorisio

Tests on eighteen small scale models which simulate the elastic and post-buckling behaviour of plate girders when subjected to shear loading are reported and discussed. The models were fabricated of steel and Araldite; the major aim was to assess whether small scale models can be employed to study shear buckling problems. A secondary object was to examine whether araldite could be used for predicting the structural behaviour and ultimate loads of plate girders. The strength and post-buckling characteristics exhibited by steel models were found to be similar to those observed by earlier investigators on full scale girders. The test results of steel models have been compared with the theoretical predictions obtained by using some ten design methods developed in different countries. Most of these methods are shown to give conservative but satisfactory predictions of the ultimate shear capacity of the model steel girders. Tests on Araldite models demonstrated that post-buckling behaviour can be observed visually on account of the large elastic deformations which the material is capable of, before collapse. However, they were found to be unsuitable for the prediction of the ultimate shear capacity. As Araldite is brittle, collapse would occur prematurely by sudden fracture before the full development of the tension field.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950093 ◽  
Author(s):  
Vasanth Keshav ◽  
Shuvendu Narayan Patel ◽  
Rajesh Kumar

In this paper, nonlinear dynamic buckling of laminated composite cylindrical panels subjected to in-plane impulsive compressive load is studied along with the failure analysis. Balanced and symmetric angle-ply laminated composite curved panels are considered. Convergence study is performed, and results are validated with the results from the existing literature, and then the dynamic buckling loads are calculated. The failure index of laminated composite curved panel is also calculated to check the precedence of first ply failure load over nonlinear dynamic buckling load. The effect of aspect ratio, loading function, and radius of curvature is studied. The analysis is carried out using finite element method. It is observed that the first ply failure for balanced and symmetric angle-ply laminated composite curved panels occurs after the panel has buckled due to dynamic impulse loads.


2010 ◽  
Vol 163-167 ◽  
pp. 1510-1514 ◽  
Author(s):  
Rui Pang ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu ◽  
Yao Meng

Detailed formation of precast floor slab connectors has significant effect on their shear capacity, but there is no such specific provision on it at present. The effects of detailed formations on the shear strength, stiffness and deformation capacity of hairpin connectors(HPC) were studied, through numerical simulation analysis under in-plane shear force. The imbedded depth (d), slug length (h), steel plate thickness (t) and its stickout(s) were taken as parameters. The analysis results show that: ⅰ) the increase of imbedded depth can improve the bearing capacity and stiffness of HPC, but decrease the deformation capacity; ⅱ) with the increase of slug length, the HPC strength, stiffness and deformation capacity raised a lot; ⅲ) the steel plates’ thickness has small effect on the stiffness, but has strong impact on the strength and deformation capacity of HPC. ⅳ) the stickout can affect the initial stiffness and yield strength of HPC slightly, but has a considerable impact on its ultimate strength and deformation capacity. On the basis of analysis, recommendations on formation details of HPC are proposed for design and construction.


2003 ◽  
Vol 125 (1) ◽  
pp. 24-30 ◽  
Author(s):  
C. Pany ◽  
S. Parthan

Propagation of waves along the axis of the cylindrically curved panels of infinite length, supported at regular intervals is considered in this paper to determine their natural frequencies in bending vibration. Two approximate methods of analysis are presented. In the first, bending deflections in the form of beam functions and sinusoidal modes are used to obtain the propagation constant curves. In the second method high precision triangular finite elements is used combined with a wave approach to determine the natural frequencies. It is shown that by this approach the order of the resulting matrices in the FEM is considerably reduced leading to a significant decrease in computational effect. Curves of propagation constant versus natural frequencies have been obtained for axial wave propagation of a multi supported curved panel of infinite length. From these curves, frequencies of a finite multi supported curved panel of k segments may be obtained by simply reading off the frequencies corresponding to jπ/kj=1,2…k. Bounding frequencies and bounding modes of the multi supported curved panels have been identified. It reveals that the bounding modes are similar to periodic flat panel case. Wherever possible the numerical results have been compared with those obtained independently from finite element analysis and/or results available in the literature.


2018 ◽  
Vol 8 (12) ◽  
pp. 2457 ◽  
Author(s):  
Kangjian Wang ◽  
Man Zhou ◽  
Mostafa Hassanein ◽  
Jitao Zhong ◽  
Hanshan Ding ◽  
...  

Despite the construction of several curved prestressed concrete girder bridges with corrugated steel webs (CSWs) around the world; their shear behavior has seldom been investigated. Accordingly, this paper substitutes the lack of available information on the global elastic shear buckling of a plane curved corrugated steel web (PCCSW) in a curved girder. This is based on the equilibrium equations and geometric equations in the elastic theory of classical shells, combined with the constitutive relation of orthotropic shells. Currently, the global elastic shear buckling process of the PCCSW in a curved girder is studied, for the first time in literature, with an equivalent orthotropic open circular cylindrical shell (OOCCS) model. The governing differential equation of global elastic shear buckling of the PCCSW, as well as its buckling strength, is derived by considering the orthotropic characteristics of a corrugated steel web, the rational trigonometric displacement modes, Galerkin’s method and variational principles. Additionally, the accuracy of the proposed theoretical formula is verified by comparison with finite element (FE) results. Moreover, the expressions of the inner or outer folded angle and radius of curvature are given by the cosine theorem of the trigonometric function and inverse trigonometric function. Subsequently, parametric analysis of the shear buckling behavior of the PCCSW is carried out by considering the cases where the radius of curvature is constant or variable. This parametric analysis highlights the effects of web dimensions, height-to-thickness ratio, aspect ratios of longitudinal and inclined panels, corrugation height, curvature radius and folded angles on the elastic shear buckling strength. As a result, this study provides a theoretical reference for the design and application of composite curved girders with CSWs.


2020 ◽  
Vol 169 ◽  
pp. 106011
Author(s):  
Jia-Bao Yan ◽  
Hui-Ning Guan ◽  
Yan-Yan Yan ◽  
Tao Wang

2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Dhainaut Jean-Michel

The nonlinear response of shallow shells subjected to combined acoustic and thermal loads is analyzed using an efficient nonlinear modal finite element (FE) formulation. The acoustic loads have non-Gaussian probabilistic characteristics and are simulated by an algorithm capable of reliably converging to a target power spectral density (PSD) function and marginal probability density function (PDF). Factors contributing to the panel structural stiffness, softening and hardening effects, and modal contribution are also investigated along with their impact on the root-mean-square responses. The Palmgren–Miner cumulative damage theory in combination with the rainflow counting (RFC) cycles methods was used to estimate the panel fatigue life. Parametric studies for cylindrical and spherical curved panels considering stacking laminations, radii of curvatures, acoustic and thermal loads are studied in detail.


1992 ◽  
Vol 114 (3) ◽  
pp. 212-219 ◽  
Author(s):  
M. Raoof ◽  
Y. P. Huang

Steel cables play an important role in many offshore applications. In many cases, an understanding of the magnitude and pattern of bending stresses in the individual component wires of a bent strand is essential for minimizing the risk of their failure under operating conditions. Following previously reported experimental observations, a theoretical model is proposed for obtaining the magnitude of wire bending stresses in a multi-layered and axially preloaded spiral strand fixed at one end and subsequently bent to a constant radius of curvature. The individual wire bending stresses are shown to be composed of two components. The first component is the axial stress generated in the wires due to interwire/interlayer shear interactions between the wires in a bent cable, and the second component is associated with the wires bending about their own axes. Using the theoretical model, which includes the effects of interwire friction, parametric studies on a number of realistic helical strands with widely different cable (and wire) diameters and lay angles subjected to a range of practical mean axial loads, and subsequently bent to a range of radii of curvature with one end of the cable fixed against rotation, have been carried out. It is shown that for most practical applications, the axial component of wire stresses due to friction is much greater than the second component of bending stresses associated with the individual wires bending about their own axes.


Sign in / Sign up

Export Citation Format

Share Document