Wire Stress Calculations in Helical Strands Undergoing Bending

1992 ◽  
Vol 114 (3) ◽  
pp. 212-219 ◽  
Author(s):  
M. Raoof ◽  
Y. P. Huang

Steel cables play an important role in many offshore applications. In many cases, an understanding of the magnitude and pattern of bending stresses in the individual component wires of a bent strand is essential for minimizing the risk of their failure under operating conditions. Following previously reported experimental observations, a theoretical model is proposed for obtaining the magnitude of wire bending stresses in a multi-layered and axially preloaded spiral strand fixed at one end and subsequently bent to a constant radius of curvature. The individual wire bending stresses are shown to be composed of two components. The first component is the axial stress generated in the wires due to interwire/interlayer shear interactions between the wires in a bent cable, and the second component is associated with the wires bending about their own axes. Using the theoretical model, which includes the effects of interwire friction, parametric studies on a number of realistic helical strands with widely different cable (and wire) diameters and lay angles subjected to a range of practical mean axial loads, and subsequently bent to a range of radii of curvature with one end of the cable fixed against rotation, have been carried out. It is shown that for most practical applications, the axial component of wire stresses due to friction is much greater than the second component of bending stresses associated with the individual wires bending about their own axes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.


2021 ◽  
Vol 11 (7) ◽  
pp. 2917
Author(s):  
Madalina Rabung ◽  
Melanie Kopp ◽  
Antal Gasparics ◽  
Gábor Vértesy ◽  
Ildikó Szenthe ◽  
...  

The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and A508 Cl.2, was studied using two different methods of magnetic nondestructive testing: micromagnetic multiparameter microstructure and stress analysis (3MA-X8) and magnetic adaptive testing (MAT). The microstructure and mechanical properties of reactor pressure vessel (RPV) materials are modified due to neutron irradiation; this material degradation can be characterized using magnetic methods. For the first time, the progressive change in material properties due to neutron irradiation was investigated on the same specimens, before and after neutron irradiation. A correlation was found between magnetic characteristics and neutron-irradiation-induced damage, regardless of the type of material or the applied measurement technique. The results of the individual micromagnetic measurements proved their suitability for characterizing the degradation of RPV steel caused by simulated operating conditions. A calibration/training procedure was applied on the merged outcome of both testing methods, producing excellent results in predicting transition temperature, yield strength, and mechanical hardness for both materials.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3165 ◽  
Author(s):  
Rusong Miao ◽  
Ruili Shen ◽  
Songhan Zhang ◽  
Songling Xue

Pre-stressed bolted joints are widely used in civil structures and industries. The tightening force of a bolt is crucial to the reliability of the joint connection. Loosening or over-tightening of a bolt may lead to connectors slipping or bolt strength failure, which are both harmful to the main structure. In most practical cases it is extremely difficult, even impossible, to install the bolts to ensure there is a precise tension force during the construction phase. Furthermore, it is inevitable that the bolts will loosen due to long-term usage under high stress. The identification of bolt tension is therefore of great significance for monitoring the health of existing structures. This paper reviews state-of-the-art research on bolt tightening force measurement and loosening detection, including fundamental theories, algorithms, experimental set-ups, and practical applications. In general, methods based on the acoustoelastic principle are capable of calculating the value of bolt axial stress if both the time of incident wave and reflected wave can be clearly recognized. The relevant commercial instrument has been developed and its algorithm will be briefly introduced. Methods based on contact dynamic phenomena such as wave energy attenuation, high-order harmonics, sidebands, and impedance, are able to correlate interface stiffness and the clamping force of bolted joints with respective dynamic indicators. Therefore, they are able to detect or quantify bolt tightness. The related technologies will be reviewed in detail. Potential challenges and research trends will also be discussed.


1992 ◽  
Vol 3 (2) ◽  
pp. 176-192
Author(s):  
T.W. Abou-Arab ◽  
M. Othman ◽  
Y.S.H. Najjar

Increasing requirements for vehicle confort, economy and reliability lead some investigators to consider the relationships between the mechanical vibrations with the heat and fluid flow induced vibration and noise in a more accurate manner. This paper describes the variation of the vibration phenomena associated with the motion of some engine components under different operating conditions. The measured vibration spectra indicates its capability in predicting symptoms of early engine failures, hence, expediting their control using a suitable feedback system. Parametric studies involving the effect of air-fuel ratio, ignition timing and engine speed on the vibration pattern are also carried out. These studies indicate that the amplitude of vibration decreases as the speed increases then increases again after certain engine speed. The effect of ignition system characteristic on the induced vibration are obtained and the correlation between the developed power and the engine dynamics over a range of operating conditions are discussed.


1994 ◽  
Vol 29 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M Raoof ◽  
I Kraincanic

Using theoretical parametric studies covering a wide range of cable (and wire) diameters and lay angles, the range of validity of various approaches used for analysing helical cables are critically examined. Numerical results strongly suggest that for multi-layered steel strands with small wire/cable diameter ratios, the bending and torsional stiffnesses of the individual wires may safely be ignored when calculating the 2 × 2 matrix for strand axial/torsional stiffnesses. However, such bending and torsional wire stiffnesses are shown to be first order parameters in analysing the overall axial and torsional stiffnesses of, say, seven wire stands, especially under free-fixed end conditions with respect to torsional movements. Interwire contact deformations are shown to be of great importance in evaluating the axial and torsional stiffnesses of large diameter multi-layered steel strands. Their importance diminishes as the number of wires associated with smaller diameter cables decreases. Using a modified version of a previously reported theoretical model for analysing multilayered instrumentation cables, the importance of allowing for the influence of contact deformations in compliant layers on cable overall characteristics such as axial or torsional stiffnesses is demonstrated by theoretical numerical results. In particular, non-Hertzian contact formulations are used to obtain the interlayer compliances in instrumentation cables in preference to a previously reported model employing Hertzian theory with its associated limitations.


Author(s):  
N.M. Dignard ◽  
M.I. Boulos

Abstract An experimental study of the spheroidization efficiency of induction plasma processes was completed. The main objective being to obtain models which could be subsequently used for the prediction of the spheroidization efficiency for various powders and plasma operating conditions. Silica, alumina, chromium oxide and zirconia powders were treated during the experimentation. For the plasma treatment of the powders the installation used had a maximum available power of 50 kW with an operating frequency of 3 MHz. Operating conditions were varied such to minimize side reactions and the evaporation of powders. The resulting powders did show the presence of cavities and a slight change in the mean diameters. The maximum energy efficiency based semi-empirical model did predict the spheroidization efficiency of the particles beyond a defined critical point known as the maximum energy efficiency point. For the model, the maximum energy efficiency is distinct for the individual powders but remain within a defined range which is reflected in the small variations in the Z constant.


Author(s):  
Shunki Nishii ◽  
Yudai Yamasaki

Abstract To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression autoignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, the engine driving environment, and the engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks (NNs) considering the operating conditions and can respond to the driving environment and the engine aging by training the NNs onboard. Detailed studies were conducted regarding the training methods. Furthermore, the effectiveness of this adaptation method was confirmed by evaluating the prediction accuracy of the HRR model and model-based control experiments.


Author(s):  
G G Chew ◽  
I C Howard ◽  
E A Patterson

It is proposed that, in appropriate circumstances, membrane structures can experience bending moments. On uniformly inflating a thin sheet structure, which has a shape consisting of multiple curvatures, the structure will deform in such a way that the final shape will have a single radius of curvature, assuming that failure does not occur. It is the large change of shape from a multicurvature surface to a single curvature surface that causes bending moments to exist within a membrane. The validity of the hypothesis has been demonstrated using four finite element models, including an elliptical cylinder, an ellipsoid, a ‘double’ cone and a trileaflet heart valve.


Author(s):  
Aaron Hunter ◽  
John Agapeyev

The process of belief revision occurs in many applications where agents may have incorrect or incomplete information. One important theoretical model of belief revision is the well-known AGM approach. Unfortunately, there are few tools available for solving AGM revision problems quickly; this has limited the use of AGM operators for practical applications. In this demonstration paper, we describe GenC, a tool that is able to quickly calculate the result of AGM belief revision for formulas with hundreds of variables and millions of clauses. GenC uses an AllSAT solver and parallel processing to solve revision problems at a rate much faster than existing systems. The solver works for the class of parametrised difference operators, which is an extensive class of revision operators that use a weighted Hamming distance to measure the similarity between states. We demonstrate how GenC can be used as a stand-alone tool or as a component of a reasoning system for a variety of applications.


Sign in / Sign up

Export Citation Format

Share Document