scholarly journals Three-dimensional nonlinear displacement-based beam element for members with asymmetric thin-walled sections

2020 ◽  
Author(s):  
Xinlong Du ◽  
Jerome Hajjar

Asymmetric thin-walled sections such as steel angles and tees are widely used in truss structures and transmission towers. To address extreme limit states that these structures encounter due to extreme events such as hurricanes and earthquakes, it is important to capture their response due to large deformations caused by static or dynamic loading. In the nonlinear large deformation regime, these members have coupled axial-flexural-torsional deformation due to the so-called Wagner effect and the noncoincident shear center and centroid. A three-dimensional corotational total Lagrangian beam element is formulated and implemented in the OpenSees corotational framework to account for these coupling effects by invoking Green-Lagrange strains referenced to a basic system. In the basic system, shear forces and torque are defined with respect to the shear center, axial force is referred to the centroid, and flexure is defined around the section principle axes but in the planes containing the shear center. The element tangent stiffness matrix is derived through linearization of the governing equation obtained from the principle of virtual work. Cubic Hermitian functions for the transverse displacements and a linear shape function for the axial and torsional deformation are adopted in the development. Before conducting the corotational transformation, all element end forces and displacements are transformed to act about the shear center. In order to remedy membrane locking in the inextensional bending mode, the high order bending terms in the axial strain are replaced by a constant effective strain. Cyclic material nonlinearity is considered by discretizing the cross section into a grid of fibers, tracking the steel uniaxial stress-strain constitutive at each fiber, and performing numerical integration over the cross section to obtain the section stiffness matrix. The formulation is compared against a set of experimental and numerical results to validate that the element can model geometric and material nonlinearities accurately and efficiently.

2021 ◽  
pp. 1-23
Author(s):  
M. Talele ◽  
M. van Tooren ◽  
A. Elham

Abstract An efficient, fully coupled beam model is developed to analyse laminated composite thin-walled structures with arbitrary cross-sections. The Euler–Lagrangian equations are derived from the kinematic relationships for a One-Dimensional (1D) beam representing Three-Dimensional (3D) deformations that take into account the cross-sectional stiffness of the composite structure. The formulation of the cross-sectional stiffness includes all the deformation effects and related elastic couplings. To circumvent the problem of shear locking, exact solutions to the approximating Partial Differential Equations (PDEs) are obtained symbolically instead of by numerical integration. The developed locking-free composite beam element results in an exact stiffness matrix and has super-convergent characteristics. The beam model is tested for different types of layup, and the results are validated by comparison with experimental results from literature.


2012 ◽  
Vol 22 (03) ◽  
pp. 1150016 ◽  
Author(s):  
LORENZO FREDDI ◽  
MARIA GIOVANNA MORA ◽  
ROBERTO PARONI

Our aim is to rigorously derive a hierarchy of one-dimensional models for thin-walled beams with rectangular cross-section, starting from three-dimensional nonlinear elasticity. The different limit models are distinguished by the different scaling of the elastic energy and of the ratio between the sides of the cross-section. In this paper we report the first part of our results. More precisely, denoting by h and δh the length of the sides of the cross-section, with δh ≪ h, and by [Formula: see text] the scaling factor of the bulk elastic energy, we analyze the cases in which δh/εh → 0 (subcritical) and δh/εh → 1 (critical).


Author(s):  
J. B. Jonker

AbstractThis paper presents a three-dimensional beam element for stability analysis of elastic thin-walled open-section beams in multibody systems. The beam model is based on the generalized strain beam formulation. In this formulation, a set of independent deformation modes is defined which are related to dual stress resultants in a co-rotational frame. The deformation modes are characterized by generalized strains or deformations, expressed as analytical functions of the nodal coordinates referred to the global coordinate system. A nonlinear theory of non-uniform torsion of open-section beams is adopted for the derivation of the elastic and geometric stiffness matrices. Both torsional-related warping and Wagner’s stiffening torques are taken into account. Second order approximations for the axial elongation and bending curvatures are included by additional second order terms in the expressions for the deformations. The model allows to study the buckling and post-buckling behaviour of asymmetric thin-walled beams with open cross-section that can undergo moderately large twist rotations. The inertia properties of the beam are described using both consistent and lumped mass formulations. The latter is used to model rotary and warping inertias of the beam cross-section. Some validation examples illustrate the accuracy and computational efficiency of the new beam element in the analysis of the buckling and post-buckling behaviour of thin-walled beams under various loads and (quasi)static boundary conditions. Finally, applications to multibody problems are presented, including the stability analysis of an elementary two-flexure cross-hinge mechanism.


Author(s):  
Florentina M. Gantoi ◽  
Michael A. Brown ◽  
Ahmed A. Shabana

The focus of this investigation is to study the mechanics of the knee joint using new ligament/bone insertion site constraint models that require the integration of multibody system and large displacement finite element algorithms. Two different sets of clamped end conditions at the ligament/bone insertion site are examined using nonlinear large displacement absolute nodal coordinate formulation (ANCF) finite elements. The first set of end conditions, called the partially clamped joint, eliminates only the translations and rotations at a point, allowing for the cross section stretch and shear at the ligament/bone connection. The second joint, called the fully clamped joint, eliminates all the translation, rotation, and deformation degrees of freedom of the cross section at the ligament/bone insertion site. In the case of the fully clamped joint, the gradient vectors do not change their length and orientation, allowing for the use of the constant strain assumptions. The partially clamped joint, on the other hand, allows for the change in length and relative orientation of the gradient vectors at the bone/ligament insertion site, leading to the cross section deformation induced by knee movements. Nanson’s formula is applied as a measure of the deformation of the cross section in the case of the partially clamped joint. In this study, the major bones in the knee joint consisting of the femur, tibia, and fibula are modeled as rigid bodies while the ligaments structures are modeled using the large displacement ANCF finite elements. Two different ANCF finite element models are developed in this investigation: the first model employs the fully parameterized three-dimensional beam element while the second model employs the three-dimensional cable element. The three-dimensional fully parameterized beam element allows for a straight forward implementation of a neo-Hookean constitutive model that can be used to accurately predict the large displacement as experienced in knee flexation and rotation. At the ligament bone insertion site, the ANCF fully parameterized beam element is used to define a fully or partially constrained joint while the ANCF cable element can only be used to define one joint type. The fully and partially clamped joint constraints are satisfied at the position, velocity, and acceleration levels using a dynamic formulation that is based on an optimum sparse matrix structure. The approach described in this investigation can be used to develop more realistic models of the knee and is applicable to future research studies on ligaments, muscles, and soft tissues. In particular, the partially clamped joint representation of the ligament/bone insertion site constraints can be used to develop improved structural mechanics models of the knee.


2013 ◽  
Vol 871 ◽  
pp. 129-134
Author(s):  
Chang Hong Chen ◽  
Ying Huang

Based on the traditional mechanical model of thin-walled straight beam, the paper makes a systematic analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the paper deduces the pre-twisted thin-walled beam Saint-Venant warping strain. According to traditional thin-walled straight beam finite element mechanical model, the paper establishes its finite element stiffness matrix considering the Saint-Venant warping deformations. Finally, by calculating the pre-twisted elliptical section beam example, and contrasting three-dimensional solid finite element using ANSYS, the comparative analysis results show that pre-twisted thin-walled beam element stiffness matrix considering Saint-Venant warping deformation has good accuracy.


2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
M. Jafari ◽  
M. J. Mahjoob

In this paper, the exact stiffness matrix of curved beams with nonuniform cross section is derived using direct method. The considered element has two nodes and 12 degrees of freedom, with three forces and three moments applied at each node. The noncoincidence effect of shear center and center of area is also considered in this element. The deformations of the beam are due to bending, torsion, tensile, and shear loads. The line passing through center of area is a general three-dimensional curve and the cross section properties may change arbitrarily along it. The method is extended to deal with distributed loads on the curved beams. The stiffness matrix of some selected types of beams is determined by this method. The results are compared (where possible) with previously published results, simple beam finite element analysis and analytic solution. It is shown that the determined stiffness matrix is exact and that any type of beam can be analyzed by this method.


2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.


Sign in / Sign up

Export Citation Format

Share Document