scholarly journals Computation of Thin-Walled Cross-Section Resistance to Local Buckling with the Use of the Critical Plate Method

2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.

2020 ◽  
Vol 10 (13) ◽  
pp. 4461 ◽  
Author(s):  
Andrzej Szychowski ◽  
Karolina Brzezińska

In modern steel construction, thin-walled elements with Class 4 cross-sections are commonly used. For the sake of the computation of such elements according to European Eurocode 3 (EC3), simplified computational models are applied. These models do not account for important parameters that affect the behavior of a structure susceptible to local stability loss. This study discussed the effect of local buckling on the design ultimate resistance of a continuous beam with a thin-walled Class 4 I-shaped cross-section. In the investigations, a more accurate computational model was employed. A new calculation model was proposed, based on the analysis of local buckling separately for the span segment and the support segment of the first span, which are characterized by different distributions of bending moments. Critical stress was determined using the critical plate method (CPM), taking into account the effect of the mutual elastic restraint of the cross-section walls. The stability analysis also accounted for the effect of longitudinal stress variation resulting from the varied distribution of bending moments along the continuous beam length. The results of the calculations were compared with the numerical simulations using the finite element method. The obtained results showed very good congruence. The phenomena mentioned above are not taken into consideration in the computational model provided in EC3. Based on the critical stress calculated as above, “local” critical moments were determined. These constitute a limit on the validity of the Vlasov theory of thin-walled bars. Design ultimate resistance of the I-shaped cross-section was determined from the plastic yield condition of the most compressed edge under the assumptions specified in the study. Detailed calculations were performed for I-sections welded from thin metal sheets, and for sections made from two cold-formed channels (2C). The impact of the following factors on the critical resistance and design ultimate resistance of the midspan and support cross-sections was analyzed: (1) longitudinal stress variation, (2) relative plate slenderness of the flange, and (3) span length of the continuous beam. The results were compared with the outcomes obtained for box sections with the same contour dimensions, and also with those produced acc. EC3. It was shown that compared with calculations acc. EC3, those performed in accordance with the CPM described much more accurately the behavior of the uniformly loaded continuous beam with a thin-walled section. This could lead to a more effective design of structures of this class.


2015 ◽  
Vol 725-726 ◽  
pp. 752-757 ◽  
Author(s):  
Darya Trubina ◽  
Dzhamal Abdulaev ◽  
Egor Pichugin ◽  
Vladimir Rybakov ◽  
Marsel Garifullin ◽  
...  

The influence of local buckling on the bearing capacity of light steel thin-walled profiles is a hot topic today. In this paper we evaluated the effect of the thickness of the elements of the cross section on bearing capacity the profile in a transverse bending.


2014 ◽  
Vol 13 (3) ◽  
pp. 291-298
Author(s):  
Andrzej Szychowski

The issue of the stability loss in a compressed wall of a thin-walled member with an open cross section was reduced to the buckling analysis of the cantilever wall. The wall was unilaterally elastically restrained against rotation. The stiffening of the free edge of the wall was susceptible to deflection. The plate deflection functions and stiffenings that allow the modelling of boundary conditions on both longitudinal edges were proposed. Graphs of buckling coefficients for different indexes of the elastic restraint of the supported edge and different geometries of the edge stiffening were determined.


2018 ◽  
Vol 64 (4) ◽  
pp. 123-143 ◽  
Author(s):  
K. Brzezińska ◽  
A. Szychowski

AbstractThe issues of local stability and ultimate resistance of a continuous beam with thin-walled box section (Class 4) were reduced to the analysis of the local buckling of bilaterally elastically restrained internal plate of the compression flange at longitudinal stress variation. Critical stress of the local buckling was determined using the so-called Critical Plate Method (CPM). In the method, the effect of the elastic restraint of the component walls of the bar section and the effect of longitudinal stress variation that results from varying distribution of bending moments were taken into account. On that basis, appropriate effective characteristics of reliable sections were determined. Additionally, ultimate resistances of those sections were estimated. The impact of longitudinal stress variation and of the degree of elastic restraint of longitudinal edges on, respectively, the local buckling of compression flanges in the span section (p) and support section (s) was analysed. The influence of the span length of the continuous beam and of the relative plate slenderness of the compression flange on the critical ultimate resistance of box sections was examined.


2015 ◽  
Vol 61 (3) ◽  
pp. 149-168
Author(s):  
A. Szychowski

AbstractBuckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.


2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 316 ◽  
Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
He Ling ◽  
Yang Lian ◽  
Mingtian Ma

The cross-sectional shape of a linear guideway has been processed before the straightening process. The cross-section features influence not only the position of the neutral axis, but also the applied and residual stresses along the longitudinal direction, especially in a multi-step straightening process. This paper aims to present an analytical model based on elasto-plastic theory and three-point reverse bending theory to predict straightening stroke and longitudinal stress distribution during the multi-step straightening process of linear guideways. The deviation of the neutral axis is first analyzed considering the asymmetrical features of the cross-section. Owing to the cyclic loading during the multi-step straightening process, the longitudinal stress curves are then calculated using the linear superposition of stresses. Based on the cross-section features and the superposition of stresses, the bending moment is corrected to improve the predictive accuracy of the multi-step straightening process. Finite element analysis, as well as straightening experiments, have been performed to verify the applicability of the analytical model. The proposed approach can be implemented in the multi-step straightening process of linear guideways with similar cross-sectional shape to improve the straightening accuracy.


1993 ◽  
Vol 115 (4A) ◽  
pp. 432-440 ◽  
Author(s):  
C. Ribreau ◽  
S. Naili ◽  
M. Bonis ◽  
A. Langlet

The topic of this study concerns principally representative models of some elliptical thin-walled anatomic vessels and polymeric tubes under uniform negative transmural pressure p (internal pressure minus external pressure). The ellipse’s ellipticity ko, defined as the major-to-minor axis ratio, varies from 1 up to 10. As p decreases from zero, at first the cross-section becomes somewhat oval, then the opposite sides touch in one point at the first-contact pressure pc. If p is lowered beneath pc, the curvature of the cross-section at the point of contact decreases until it becomes zero at the osculation pressure or the first line-contact pressure p1. For p<p1, the contact occurs along a straight-line segment, the length of which increases as p decreases. The pressures pc and p1 are determined numerically for various values of the wall thickness of the tubes. The nature of contact is especially described. The solution of the related nonlinear, two-boundary-values problem is compared with previous experimental results which give the luminal cross-sectional area (from two tubes), and the area of the mid-cross-section (from a third tube).


Sign in / Sign up

Export Citation Format

Share Document