scholarly journals Lifting the Veil: Drawing Insights about Design Teams from a Cognitively-inspired Computational Model

2018 ◽  
Author(s):  
Christopher McComb ◽  
Kenneth Kotovsky ◽  
Jonathan Cagan

Novel design methodologies are often evaluated through studies involving human designers, but such studies can incur a high personnel cost. It can also be difficult to isolate the effects of specific team or individual characteristics. This work introduces the Cognitively-Inspired Simulated Annealing Teams (CISAT) modeling framework, a platform for efficiently simulating and analyzing human design teams. The framework models a number of empirically demonstrated cognitive phenomena, thus balancing simplicity and direct applicability. This paper discusses the model's composition, and demonstrates its utility through simulating human design teams in a cognitive study. Simulation results are compared directly to the results from human designers. The CISAT model is also used to identify the most beneficial characteristics in the cognitive study.

2018 ◽  
Author(s):  
Christopher McComb ◽  
Kenneth Kotovsky ◽  
Jonathan Cagan

Novel design methodologies are often evaluated through empirical studies involving human designers. However, such empirical studies can incur a high personnel cost. Further, it can be difficult to isolate the effects of specific team or individual characteristics. These limitations could be bypassed by employing a computational model of design teams. This work introduces the Cognitively-Inspired Simulated Annealing Teams (CISAT) modeling framework, an agent-based platform that provides a means for efficiently simulating human design teams. A number of empirically demonstrated cognitive phenomena are modeled within the platform, striking a balance between model simplicity and direct applicability to engineering design problems. This paper discusses the composition of the CISAT modeling framework and demonstrates how it can be used to simulate the performance of human design teams in a cognitive study. Results simulated with CISAT are compared directly to the results derived from human designers. Finally, the CISAT model is also used to investigate the characteristics that were most and least helpful to teams during the cognitive study.


Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Novel design methodologies are often evaluated through empirical studies involving human designers. However, such empirical studies can incur a high personnel cost. Further, it can be difficult to isolate the effects of specific team or individual characteristics. These limitations could be bypassed by employing a computational model of design teams. This work introduces the Cognitively-Inspired Simulated Annealing Teams (CISAT) modeling framework, an agent-based platform that provides a means for efficiently simulating human design teams. A number of empirically demonstrated cognitive phenomena are modeled within the platform, striking a balance between model simplicity and direct applicability to engineering design problems. This paper discusses the composition of the CISAT modeling framework and demonstrates how it can be used to simulate the performance of human design teams in a cognitive study. Results simulated with CISAT are compared directly to the results derived from human designers. Finally, the CISAT model is also used to investigate the characteristics that were most and least helpful to teams during the cognitive study.


2018 ◽  
Author(s):  
Christopher McComb

Teams are a ubiquitous part of the design process and a great deal of time and effort is devoted to managing them effectively. Although teams have the potential to search effectively for solutions, they are also prone to a number of pitfalls. Thus, a greater understanding of teams is necessary to ensure that they can function optimally across a variety of tasks. Teams are typically studied through controlled laboratory experiments or through longitudinal studies that observe teams in situ. However, both of these study types can be costly and time-consuming. Months, if not years, pass between the initial conception of a study and the final analysis of results. This work creates a computational framework that efficiently emulates human design teams, thus facilitating the derivation of a theory linking the properties of design problems to optimized team characteristics, effectively making it possible to design design teams.This dissertation first introduces and validates the Cognitively-Inspired Simulated Annealing Teams (CISAT) modeling framework. The central structure of CISAT is modeled after simulated annealing, a global optimization algorithm that has been shown to effectively mimic the problem-solving process of individuals. Specifically, a multi-agent analog of simulated annealing is used in CISAT to mimic the behavior of teams. Several additional components, drawn from the psychology and problem-solving literature, are then included in the framework to enable a more accurate description of individual activity and interaction within the team. CISAT is then used to investigate the relationship between design problem properties, team characteristics, and task performance. Multiple computational simulations are conducted in which simulated teams with various characteristics solve a variety of different configuration problems. These simulations are then post-processed to produce a set of equations that make it possible to predict optimal team characteristics based on problem properties, thus enabling the optimal design of design teams. To validate these equations a behavioral study is designed and conducted in which teams of engineering students interact at different frequencies while designing a complex system. Results of the study offer a limited validation of the predictive equations.This dissertation further highlights the resource efficiency and versatility of CISAT by demonstrating its use in two additional applications. In the first, a new numerical optimization algorithm is derived directly from CISAT by stripping away all but the most quintessential team-based characteristics. The team-based characteristics of this algorithm allow it to achieve high performance across a variety of objective function with diverse topographies. In the second application, CISAT is used in conjunction with Markov concepts to examine the order in which designers make changes to their solutions. Although it has been demonstrated that humans apply changes in a specific order (called a sequence) when solving puzzles, such patterns have not been examined for engineers solving design problems. It is shown that operation sequences are used by designers, and improve solution quality. This dissertation demonstrates how characteristics of individual designers and design teams can be captured and accurately reproduced within a computational model to advance our knowledge of design methodology. Future extensions of this work have the potential to inform a deeper and more holistic understanding of the search process.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Although insights uncovered by design cognition are often utilized to develop the methods used by human designers, using such insights to inform computational methodologies also has the potential to improve the performance of design algorithms. This paper uses insights from research on design cognition and design teams to inform a better simulated annealing search algorithm. Simulated annealing has already been established as a model of individual problem solving. This paper introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent simulated annealing algorithm. Each agent controls an adaptive annealing schedule, allowing the team develop heterogeneous search strategies. Such diversity is a natural part of engineering design, and boosts performance in other multi-agent algorithms. Further, interaction between agents in HSAT is structured to mimic interaction between members of a design team. Performance is compared to several other simulated annealing algorithms, a random search algorithm, and a gradient-based algorithm. Compared to other algorithms, the team-based HSAT algorithm returns better average results with lower variance.


2018 ◽  
Vol 6 (11) ◽  
pp. 299-306
Author(s):  
K. Lenin

This paper presents Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) is proposed to solve optimal reactive power problem. The proposed Hybridized - Simulated Annealing, Nelder-Mead algorithm starts with a prime solution, which is produced arbitrarily and then the solution is disturbed into partitions. The vicinity zone is created, arbitrary numbers of partitions are selected and variables modernizing procedure is started in order to create a trail of neighbour solutions. This procedure helps the SN algorithm to explore the region around an existing iterate solution. The Nelder- Mead algorithm is used in the last stage in order to progress the most excellent solution found so far and hasten the convergence in the closing stage. The proposed Hybridization of Simulated Annealing with Nelder-Mead algorithm (SN) has been tested in standard IEEE 57,118 bus systems and simulation results show the superior performance of the proposed SN algorithm in reducing the real power loss and voltage profiles are within the limits.


2015 ◽  
Vol 645-646 ◽  
pp. 1320-1325
Author(s):  
Xi Xin Ling ◽  
Da Hai Ren ◽  
Zheng You

Identification and characterization of CTCs can be used as a tool for the study of cancer metastases. A novel design of microfluidic chip used for enrichment of circulating tumor cells is presented in this paper. An integration of DLD method and negative enrichment method were designed to improve the throughput and recovery rate while getting intact CTCs. The DLD stage is used to separate CTCs from blood cells preliminarily, and the negative enrichment stage is used to acquire purified CTCs. Both of them were simulated with COMSOL Multiphysics. Simulation results showed that triangular micro-posts have better performance in DLD stage, and wave structures could generate better disturbance effect than herringbone structures. This chip provides a potential approach with high throughput and purity for the enrichment of CTCs.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Insights uncovered by research in design cognition are often utilized to develop methods used by human designers; in this work, such insights are used to inform and improve computational methodologies. This paper introduces the heterogeneous simulated annealing team (HSAT) algorithm, a multiagent simulated annealing (MSA) algorithm. HSAT is based on a validated computational model of human-based engineering design and retains characteristics of the model that structure interaction between team members and allow for heterogeneous search strategies to be employed within a team. The performance of this new algorithm is compared to several other simulated annealing (SA) based algorithms on three carefully selected benchmarking functions. The HSAT algorithm provides terminal solutions that are better on average than other algorithms explored in this work.


2015 ◽  
Vol 36 (4) ◽  
Author(s):  
Kao-Der Chang ◽  
Ruei-Chang Lu ◽  
Yu-Ping Liao ◽  
Keh-Yi Lee

AbstractNew design for surface plasmon resonance (SPR) lens having a sub-wavelength size of spot in the far-field region is proposed in this work. An extra structure of concentrically annular grating fabricated on the top surface of SPR lens is utilized to improve the quality of focusing. Numerical simulation results of the novel type of SPR lenses with different grating structures are presented and compared.


Sign in / Sign up

Export Citation Format

Share Document