scholarly journals No Evidence for an Influence of Grammatical Number in Two-Digit Magnitude and Place-Value Processing in Adults

2020 ◽  
Author(s):  
Julia Huber ◽  
Mojtaba Soltanlou ◽  
Krzysztof Cipora ◽  
Katarzyna Lipowska ◽  
Frank Domahs ◽  
...  

Numerous studies revealed effects of some linguistic properties like inversion or reading/writing direction on number processing. However, it remains more controversial, whether influences at a syntactic level, such as singular vs. plural form associated with certain numbers, can also influence magnitude and place-value processing and vice versa. In this study, we investigated for the first time in a classical two-digit number comparison task whether grammatical number also affects magnitude and place-value processing (and vice versa). To do so, we used a peculiarity of the Polish language, where the inflection of a verb depends on the unit digit of a number (singular for 25-29, 35-39, etc. and plural for 22-24, 32-34, etc.). This systematic pattern allows the manipulation of congruency between grammatical number and magnitude information, both on an item and a response level (i.e., the grammatical number is either compatible or incompatible to the magnitude information or the response side). We observed no significant interference effects, neither between grammatical number (i.e., associated singular/ plural inflection of the number) and magnitude information, nor between grammatical number and the response side. Model comparisons revealed that models without grammatical number, could explain our data best. Hence, grammatical number did not contribute to the explanation of the data beyond unit-decade compatibility, distance effect and SNARC effect and, thus, seems to be negligible in two-digit number comparison. Task characteristics, which might contribute to this finding are discussed.

Author(s):  
Hans-Christoph Nuerk ◽  
Korbinian Moeller ◽  
Klaus Willmes

Only recently the focus in numerical cognition research has considered multi-digit number processing as a relatively new and yet understudied domain in mathematical cognition. In this chapter: (i) we argue that single-digit number processing is not sufficient to understand multi-digit number processing; (ii) provide an overview on which representations and effects have been investigated for multi-digit numbers; (iii) suggest a conceptual distinction between place-identification, place-value activation, and place-value computation; (iv) identify language influences on multi-digit number processing along that conceptual distinction; and (v) argue that for numerical development indices of multi-digit number processing may be more suitable predictors of later arithmetical performance than classical single-digit measure such as the distance effect or non-numerical variables (e.g., working memory). In the final section, we summarize the important issues in multi-digit number processing, outline future directions and try to encourage readers to contribute to a new, exciting, yet understudied domain of numerical cognition.


2018 ◽  
Vol 71 (8) ◽  
pp. 1761-1770 ◽  
Author(s):  
Elizabeth Y Toomarian ◽  
Edward M Hubbard

The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components. Subsequent studies have produced evidence for default holistic processing but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments. Experiment 1 replicated Bonato et al.; 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC (Spatial-Numerical Association of Response Codes) effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.


2020 ◽  
Author(s):  
Julia Bahnmueller ◽  
Krzysztof Cipora ◽  
Silke Melanie Goebel ◽  
Hans-Christoph Nuerk ◽  
Mojtaba Soltanlou

The symbolic number comparison task has been widely used to investigate the cognitive representation and underlying processes of multi-digit number processing. The standard procedure to establish numerical distance and compatibility effects in such number comparison paradigms usually entails asking participants to indicate the larger of two presented multi-digit Arabic numbers rather than to indicate the smaller number. In terms of linguistic markedness, this procedure includes the unmarked/base form in the task instruction (i.e., large). Here we evaluate distance and compatibility effects in a three-digit number comparison task observed in Bahnmueller et al. (2015) using a marked task instruction (i.e., ‘pick the smaller number’). Moreover, we aimed at clarifying whether the markedness of task instruction influences common numerical effects and especially componential processing as indexed by compatibility effects. We instructed German- and English-speaking adults (N=52) to indicate the smaller number in a three-digit number comparison task as opposed to indicating the larger number in Bahnmueller et al. (2015). We replicated standard effects of distance and compatibility in the new pick the smaller number experiment. Moreover, when comparing our findings to Bahnmueller et al. (2015), numerical effects did not differ significantly between the two studies as indicated by both frequentist and Bayesian analysis. Taken together our data suggest that distance and compatibility effects alongside componential processing of multi-digit numbers are rather robust against variations of linguistic markedness of task instructions.


2021 ◽  
Vol 7 (3) ◽  
pp. 295-307 ◽  
Author(s):  
Julia Bahnmueller ◽  
Krzysztof Cipora ◽  
Silke Melanie Göbel ◽  
Hans-Christoph Nuerk ◽  
Mojtaba Soltanlou

The symbolic number comparison task has been widely used to investigate the cognitive representation and underlying processes of multi-digit number processing. The standard procedure to establish numerical distance and compatibility effects in such number comparison paradigms usually entails asking participants to indicate the larger of two presented multi-digit Arabic numbers rather than to indicate the smaller number. In terms of linguistic markedness, this procedure includes the unmarked/base form in the task instruction (i.e., large). Here we evaluate distance and compatibility effects in a three-digit number comparison task observed in Bahnmueller et al. (2015, https://doi.org/10.3389/fpsyg.2015.01216) using a marked task instruction (i.e., ‘pick the smaller number’). Moreover, we aimed at clarifying whether the markedness of task instruction influences common numerical effects and especially componential processing as indexed by compatibility effects. We instructed German- and English-speaking adults (N = 52) to indicate the smaller number in a three-digit number comparison task as opposed to indicating the larger number in Bahnmueller et al. (2015). We replicated standard effects of distance and compatibility in the new pick the smaller number experiment. Moreover, when comparing our findings to Bahnmueller et al. (2015), numerical effects did not differ significantly between the two studies as indicated by both frequentist and Bayesian analysis. Taken together our data suggest that distance and compatibility effects alongside componential processing of multi-digit numbers are rather robust against variations of linguistic markedness of task instructions.


2009 ◽  
Vol 65 ◽  
pp. S238
Author(s):  
Yousuke Ogata ◽  
Takahiro Horaguchi ◽  
Noriya Watanabe ◽  
Takeshi Aikawa ◽  
Miyuki Yamamoto

2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Meltem Ballan

The aim of this pilot study was to test the validity, efficiency and measurements of a two-digit number comparison study. Number perception, its neural basis and its relationship to how numerical stimuli are presented have been challenging research topics in cognitive neuroscience for many years. A primary question that has been addressed is whether the perception of the quantity of a visually presented number stimulus is dissociable from its early visual perception. The present study examined the possible influence of visual quality judgment on quantity judgments of numbers. To address this issue, a two-digit number comparison task was developed. We suggest that the design parameters affect the accuracy of the results.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53824 ◽  
Author(s):  
Belinda Pletzer ◽  
Martin Kronbichler ◽  
Hans-Christoph Nuerk ◽  
Hubert Kerschbaum

2006 ◽  
Vol 18 (9) ◽  
pp. 1518-1530 ◽  
Author(s):  
Xun Liu ◽  
Hongbin Wang ◽  
Christine R. Corbly ◽  
Jiajie Zhang ◽  
Jane E. Joseph

The neural mechanism of number representation and processing is currently under extensive investigation. In this functional magnetic resonance imaging study, we designed a number comparison task to examine how people represent and compare two-digit numbers in the brain, and whether they process the decade and unit digits in parallel. We manipulated the decade-unit-digit congruency and numerical distance between the pairs of numbers. We observed both Stroop-like interference and the distance effect in the participants' performance. People responded more slowly to incongruent pairs of numbers and pairs of a smaller distance. The inferior parietal cortex showed common and distinct patterns of activation for both attentional selection and number comparison processes, and its activity was modulated by the Stroop-like interference effect and the distance effect. Taken together, these results support both parallel and holistic comparison of two-digit numbers in the brain.


Sign in / Sign up

Export Citation Format

Share Document