Predictability-dependent encoding of statistical regularities in the early visual cortex

2022 ◽  
Author(s):  
Andrea Kóbor ◽  
Karolina Janacsek ◽  
Petra Hermann ◽  
Zsofia Zavecz ◽  
Vera Varga ◽  
...  

Previous research recognized that humans could extract statistical regularities of the environment to automatically predict upcoming events. However, it has remained unexplored how the brain encodes the distribution of statistical regularities if it continuously changes. To investigate this question, we devised an fMRI paradigm where participants (N = 32) completed a visual four-choice reaction time (RT) task consisting of statistical regularities. Two types of blocks involving the same perceptual elements alternated with one another throughout the task: While the distribution of statistical regularities was predictable in one block type, it was unpredictable in the other. Participants were unaware of the presence of statistical regularities and of their changing distribution across the subsequent task blocks. Based on the RT results, although statistical regularities were processed similarly in both the predictable and unpredictable blocks, participants acquired less statistical knowledge in the unpredictable as compared with the predictable blocks. Whole-brain random-effects analyses showed increased activity in the early visual cortex and decreased activity in the precuneus for the predictable as compared with the unpredictable blocks. Therefore, the actual predictability of statistical regularities is likely to be represented already at the early stages of visual cortical processing. However, decreased precuneus activity suggests that these representations are imperfectly updated to track the multiple shifts in predictability throughout the task. The results also highlight that the processing of statistical regularities in a changing environment could be habitual.

2015 ◽  
Vol 113 (9) ◽  
pp. 3159-3171 ◽  
Author(s):  
Caroline D. B. Luft ◽  
Alan Meeson ◽  
Andrew E. Welchman ◽  
Zoe Kourtzi

Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex.


2021 ◽  
pp. 1-12
Author(s):  
Joonkoo Park ◽  
Sonia Godbole ◽  
Marty G. Woldorff ◽  
Elizabeth M. Brannon

Abstract Whether and how the brain encodes discrete numerical magnitude differently from continuous nonnumerical magnitude is hotly debated. In a previous set of studies, we orthogonally varied numerical (numerosity) and nonnumerical (size and spacing) dimensions of dot arrays and demonstrated a strong modulation of early visual evoked potentials (VEPs) by numerosity and not by nonnumerical dimensions. Although very little is known about the brain's response to systematic changes in continuous dimensions of a dot array, some authors intuit that the visual processing stream must be more sensitive to continuous magnitude information than to numerosity. To address this possibility, we measured VEPs of participants viewing dot arrays that changed exclusively in one nonnumerical magnitude dimension at a time (size or spacing) while holding numerosity constant and compared this to a condition where numerosity was changed while holding size and spacing constant. We found reliable but small neural sensitivity to exclusive changes in size and spacing; however, changing numerosity elicited a much more robust modulation of the VEPs. Together with previous work, these findings suggest that sensitivity to magnitude dimensions in early visual cortex is context dependent: The brain is moderately sensitive to changes in size and spacing when numerosity is held constant, but sensitivity to these continuous variables diminishes to a negligible level when numerosity is allowed to vary at the same time. Neurophysiological explanations for the encoding and context dependency of numerical and nonnumerical magnitudes are proposed within the framework of neuronal normalization.


Author(s):  
Norman Yujen Teng

Tye argues that visual mental images have their contents encoded in topographically organized regions of the visual cortex, which support depictive representations; therefore, visual mental images rely at least in part on depictive representations. This argument, I contend, does not support its conclusion. I propose that we divide the problem about the depictive nature of mental imagery into two parts: one concerns the format of image representation and the other the conditions by virtue of which a representation becomes a depictive representation. Regarding the first part of the question, I argue that there exists a topographic format in the brain but that does not imply that there exists a depictive format of image representation. My answer to the second part of the question is that one needs a content analysis of a certain sort of topographic representations in order to make sense of depictive mental representations, and a topographic representation becomes a depictive representation by virtue of its content rather than its form.


2015 ◽  
Author(s):  
Claudia Lunghi

In this research binocular rivalry is used as a tool to investigate different aspects of visual and multisensory perception. Several experiments presented here demonstrated that touch specifically interacts with vision during binocular rivalry and that the interaction likely occurs at early stages of visual processing, probably V1 or V2. Another line of research also presented here demonstrated that human adult visual cortex retains an unexpected high degree of experience-dependent plasticity by showing that a brief period of monocular deprivation produced important perceptual consequences on the dynamics of binocular rivalry, reflecting a homeostatic plasticity. In summary, this work shows that binocular rivalry is a powerful tool to investigate different aspects of visual perception and can be used to reveal unexpected properties of early visual cortex.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Polina Iamshchinina ◽  
Daniel Kaiser ◽  
Renat Yakupov ◽  
Daniel Haenelt ◽  
Alessandro Sciarra ◽  
...  

AbstractPrimary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000921
Author(s):  
Zvi N. Roth ◽  
Minyoung Ryoo ◽  
Elisha P. Merriam

The brain exhibits widespread endogenous responses in the absence of visual stimuli, even at the earliest stages of visual cortical processing. Such responses have been studied in monkeys using optical imaging with a limited field of view over visual cortex. Here, we used functional MRI (fMRI) in human participants to study the link between arousal and endogenous responses in visual cortex. The response that we observed was tightly entrained to task timing, was spatially extensive, and was independent of visual stimulation. We found that this response follows dynamics similar to that of pupil size and heart rate, suggesting that task-related activity is related to arousal. Finally, we found that higher reward increased response amplitude while decreasing its trial-to-trial variability (i.e., the noise). Computational simulations suggest that increased temporal precision underlies both of these observations. Our findings are consistent with optical imaging studies in monkeys and support the notion that arousal increases precision of neural activity.


2019 ◽  
Vol 29 (11) ◽  
pp. 4662-4678 ◽  
Author(s):  
Jason P Gallivan ◽  
Craig S Chapman ◽  
Daniel J Gale ◽  
J Randall Flanagan ◽  
Jody C Culham

Abstract The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded—prior to movement—from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.


2006 ◽  
Vol 23 (5) ◽  
pp. 815-824 ◽  
Author(s):  
NICK BARRACLOUGH ◽  
CHRIS TINSLEY ◽  
BEN WEBB ◽  
CHRIS VINCENT ◽  
ANDREW DERRINGTON

We measured the responses of single neurons in marmoset visual cortex (V1, V2, and the third visual complex) to moving first-order stimuli and to combined first- and second-order stimuli in order to determine whether first-order motion processing was influenced by second-order motion. Beat stimuli were made by summing two gratings of similar spatial frequency, one of which was static and the other was moving. The beat is the product of a moving sinusoidal carrier (first-order motion) and a moving low-frequency contrast envelope (second-order motion). We compared responses to moving first-order gratings alone with responses to beat patterns with first-order and second-order motion in the same direction as each other, or in opposite directions to each other in order to distinguish first-order and second-order direction-selective responses. In the majority (72%, 67/93) of cells (V1 73%, 45/62; V2 70%, 16/23; third visual complex 75%, 6/8), responses to first-order motion were significantly influenced by the addition of a second-order signal. The second-order envelope was more influential when moving in the opposite direction to the first-order stimulus, reducing first-order direction sensitivity in V1, V2, and the third visual complex. We interpret these results as showing that first-order motion processing through early visual cortex is not separate from second-order motion processing; suggesting that both motion signals are processed by the same system.


2014 ◽  
Vol 26 (10) ◽  
pp. 2187-2200 ◽  
Author(s):  
Hamed Zivari Adab ◽  
Ivo D. Popivanov ◽  
Wim Vanduffel ◽  
Rufin Vogels

Practicing simple visual detection and discrimination tasks improves performance, a signature of adult brain plasticity. The neural mechanisms that underlie these changes in performance are still unclear. Previously, we reported that practice in discriminating the orientation of noisy gratings (coarse orientation discrimination) increased the ability of single neurons in the early visual area V4 to discriminate the trained stimuli. Here, we ask whether practice in this task also changes the stimulus tuning properties of later visual cortical areas, despite the use of simple grating stimuli. To identify candidate areas, we used fMRI to map activations to noisy gratings in trained rhesus monkeys, revealing a region in the posterior inferior temporal (PIT) cortex. Subsequent single unit recordings in PIT showed that the degree of orientation selectivity was similar to that of area V4 and that the PIT neurons discriminated the trained orientations better than the untrained orientations. Unlike in previous single unit studies of perceptual learning in early visual cortex, more PIT neurons preferred trained compared with untrained orientations. The effects of training on the responses to the grating stimuli were also present when the animals were performing a difficult orthogonal task in which the grating stimuli were task-irrelevant, suggesting that the training effect does not need attention to be expressed. The PIT neurons could support orientation discrimination at low signal-to-noise levels. These findings suggest that extensive practice in discriminating simple grating stimuli not only affects early visual cortex but also changes the stimulus tuning of a late visual cortical area.


2017 ◽  
Vol 117 (3) ◽  
pp. 903-909 ◽  
Author(s):  
Astrid J. A. Lubeck ◽  
Angelique Van Ombergen ◽  
Hena Ahmad ◽  
Jelte E. Bos ◽  
Floris L. Wuyts ◽  
...  

The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.


Sign in / Sign up

Export Citation Format

Share Document