scholarly journals Theoretical considerations and development of a questionnaire to measure trust in automation

Author(s):  
Moritz Körber

The increasing number of interactions with automated systems has sparked the interest of researchers in trust in automation because it predicts not only whether but also how an operator interacts with an automation. In this work, a theoretical model of trust in automation is established and the development and evaluation of a corresponding questionnaire (Trust in Automation, TiA) are described. Building on the model of organizational trust by Mayer, Davis, and Schoorman (1995) and the theoretical account by Lee and See (2004), a model for trust in automation containing six underlying dimensions was established. Following a deductive approach, an initial set of 57 items was generated. In a first online study, these items were analyzed and based on the criteria item difficulty, standard deviation, item-total correlation, internal consistency, overlap with other items in content, and response quote, 40 items were eliminated and two scales were merged, leaving six scales (Reliability/Competence, Understandability/Predictability, Propensity to Trust, Intention of Developers, Familiarity, and Trust in Automation) containing a total of 19 items. The internal structure of the resulting questionnaire was analyzed in a subsequent second online study by means of an exploratory factor analysis. The results show sufficient preliminary evidence for the proposed factor structure and demonstrate that further pursuit of the model is reasonable but certain revisions may be necessary. The calculated omega coefficients indicated good to excellent reliability for all scales. The results also provide evidence for the questionnaire’s criterion validity: Consistent with the expectations, an unreliable automated driving system received lower trust ratings as a reliably functioning system. In a subsequent empirical driving simulator study, trust ratings could predict reliance on an automated driving system and monitoring in form of gaze behavior. Possible steps for revisions are discussed and recommendations for the application of the questionnaire are given.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Frederik Naujoks ◽  
Yannick Forster ◽  
Katharina Wiedemann ◽  
Alexandra Neukum

During conditionally automated driving (CAD), driving time can be used for non-driving-related tasks (NDRTs). To increase safety and comfort of an automated ride, upcoming automated manoeuvres such as lane changes or speed adaptations may be communicated to the driver. However, as the driver’s primary task consists of performing NDRTs, they might prefer to be informed in a nondistracting way. In this paper, the potential of using speech output to improve human-automation interaction is explored. A sample of 17 participants completed different situations which involved communication between the automation and the driver in a motion-based driving simulator. The Human-Machine Interface (HMI) of the automated driving system consisted of a visual-auditory HMI with either generic auditory feedback (i.e., standard information tones) or additional speech output. The drivers were asked to perform a common NDRT during the drive. Compared to generic auditory output, communicating upcoming automated manoeuvres additionally by speech led to a decrease in self-reported visual workload and decreased monitoring of the visual HMI. However, interruptions of the NDRT were not affected by additional speech output. Participants clearly favoured the HMI with additional speech-based output, demonstrating the potential of speech to enhance usefulness and acceptance of automated vehicles.


Author(s):  
Anna Feldhütter ◽  
Christian Gold ◽  
Adrian Hüger ◽  
Klaus Bengler

Highly automated vehicles (HAV), which could help to enhance road safety and efficiency, are very likely to enter the market within the next decades. To have an impact, these systems need to be purchased, which is a matter of trust and acceptance. These factors are dependent on the level of information that one has about such systems. One important source of information is various media, such as newspapers, magazines and videos, in which highly automated driving (HAD) is currently a frequent topic of discussion. To evaluate the influence of media on the perception of HAD, 31 participants were presented with three different types of media addressing HAD in a neutral manner. Afterwards, the participants experienced HAD in the driving simulator. In between these steps, the participants completed questionnaires assessing comfort, trust in automation, increase in safety, intention to use and other factors in order to analyze the effect of the media and the driving simulation experience. Results indicate that the perception of some aspects of HAD were affected by the media presented, while experiencing HAD in the driving simulator generally did not have an effect on the attitude of the participants. Other aspects, such as trust, were not affected by either media or experience. In addition, gender-related differences in the perception of HAD were found.


Author(s):  
Walter Morales-Alvarez ◽  
Mohamed Marouf ◽  
Hadj. Hamma Tadjine ◽  
Cristina Olaverri-Monreal

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 73 ◽  
Author(s):  
Tobias Hecht ◽  
Stefan Kratzert ◽  
Klaus Bengler

Automated driving research as a key topic in the automotive industry is currently undergoing change. Research is shifting from unexpected and time-critical take-over situations to human machine interface (HMI) design for predictable transitions. Furthermore, new applications like automated city driving are getting more attention and the ability to engage in non-driving related activities (NDRA) starting from SAE Level 3 automation poses new questions to HMI design. Moreover, future introduction scenarios and automated capabilities are still unclear. Thus, we designed, executed, and assessed a driving simulator study focusing on the effect of different transition frequencies and a predictive HMI while freely engaging in naturalistic NDRA. In the study with 33 participants, we found transition frequency to have effects on workload and acceptance, as well as a small impact on the usability evaluation of the system. Trust, however, was not affected. The predictive HMI was used and accepted, as can be seen by eye-tracking data and the post-study questionnaire, but could not mitigate the above-mentioned negative effects induced by transition frequency. Most attractive activities were window gazing, chatting, phone use, and reading magazines. Descriptively, window gazing and chatting gained attractiveness when interrupted more often, while reading magazines and playing games were negatively affected by transition rate.


2021 ◽  
Vol 5 (4) ◽  
pp. 16
Author(s):  
Simon Danner ◽  
Alexander Feierle ◽  
Carina Manger ◽  
Klaus Bengler

Context-adaptive functions are not new in the driving context, but even so, investigations into these functions concerning the automation human–machine interface (aHMI) have yet to be carried out. This study presents research into context-adaptive availability notifications for an SAE Level 3 automation in scenarios where participants were surprised by either availability or non-availability. For this purpose, participants (N = 30) took part in a driving simulator study, experiencing a baseline HMI concept as a comparison, and a context-adaptive HMI concept that provided context-adaptive availability notifications with the aim of improving acceptance and usability, while decreasing frustration (due to unexpected non-availability) and gaze deviation from the road when driving manually. Furthermore, it was hypothesized that participants, when experiencing the context-adaptive HMI, would activate the automated driving function more quickly when facing unexpected availability. None of the hypotheses could be statistically confirmed; indeed, where gaze behavior was concerned, the opposite effects were found, indicating increased distraction induced by the context-adaptive HMI. However, the trend in respect to the activation time was towards shorter times with the context-adaptive notifications. These results led to the conclusion that context-adaptive availability notifications might not always be beneficial for users, while more salient availability notifications in the case of an unexpected availability could be advantageous.


2021 ◽  
Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Trust in Automation is known to influence human-automation interaction and user behaviour. In the Automated Driving (AD) context, studies showed the impact of drivers’ Trust in Automated Driving (TiAD), and linked it with, e.g., difference in environment monitoring or driver’s behaviour. This study investigated the influence of driver’s initial level of TiAD on driver’s behaviour and early trust construction during Highly Automated Driving (HAD). Forty drivers participated in a driving simulator study. Based on a trust questionnaire, participants were divided in two groups according to their initial level of TiAD: high (Trustful) vs. low (Distrustful). Declared level of trust, gaze behaviour and Non-Driving-Related Activities (NDRA) engagement were compared between the two groups over time. Results showed that Trustful drivers engaged more in NDRA and spent less time monitoring the road compared to Distrustful drivers. However, an increase in trust was observed in both groups. These results suggest that initial level of TiAD impact drivers’ behaviour and further trust evolution.


2022 ◽  
pp. 910-929
Author(s):  
Johannes Maria Kraus ◽  
Yannick Forster ◽  
Sebastian Hergeth ◽  
Martin Baumann

Trust calibration takes place prior to and during system interaction along the available information. In an online study N = 519 participants were introduced to a conditionally automated driving (CAD) system and received different a priori information about the automation's reliability (low vs high) and brand of the CAD system (below average vs average vs above average reputation). Trust was measured three times during the study. Additionally, need for cognition (NFC) and other personality traits were assessed. Both heuristic brand information and reliability information influenced trust in automation. In line with the Elaboration Likelihood Model (ELM), participants with high NFC relied on the reliability information more than those with lower NFC. In terms of personality traits, materialism, the regulatory focus and the perfect automation scheme predicted trust in automation. These findings show that a priori information can influence a driver's trust in CAD and that such information is interpreted individually.


2017 ◽  
Author(s):  
Moritz Körber ◽  
Eva Baseler ◽  
Klaus Bengler

Trust in automation is a key determinant for the adoption of automated systems and their appropriate use. Therefore, it constitutes an essential research area for the introduction of automated vehicles to road traffic. In this study, we investigated the influence of trust promoting (Trust promoted group) and trust lowering (Trust lowered group) introductory information on reported trust, reliance behavior and take-over performance. Forty participants encountered three situations in a 17-minute highway drive in a conditionally automated vehicle (SAE Level 3). Situation 1 and Situation 3 were non-critical situations where a take-over was optional. Situation 2 represented a critical situation where a take-over was necessary to avoid a collision. A non-driving-related task (NDRT) was presented between the situations to record the allocation of visual attention. Participants reporting a higher trust level spent less time looking at the road or instrument cluster and more time looking at the NDRT. The manipulation of introductory information resulted in medium differences in reported trust and influenced participants’ reliance behavior. Participants of the Trust promoted group looked less at the road or instrument cluster and more at the NDRT. The odds of participants of the Trust promoted group to overrule the automated driving system in the non-critical situations were 3.65 times (Situation 1) to 5 times (Situation 3) higher. In Situation 2, the Trust promoted group’s mean take-over time was extended by 1154 ms and the mean minimum time-to-collision was 933 ms shorter. Six participants from the Trust promoted group compared to no participant of the Trust lowered group collided with the obstacle. The results demonstrate that the individual trust level influences how much drivers monitor the environment while performing an NDRT. Introductory information influences this trust level, reliance on an automated driving system, and if a critical take-over situation can be successfully solved.


Sign in / Sign up

Export Citation Format

Share Document