Forensic Feature-Comparison Expertise: Statistical Learning Facilitates Visual Comparison Performance
Forensic feature-comparison examiners in select disciplines are more accurate than novices when comparing visual evidence samples. This paper examines a key cognitive mechanism that may contribute to this superior visual comparison performance: the ability to learn how often stimuli occur in the environment (distributional statistical learning). We examined the relation-ship between distributional learning and visual comparison performance, and the impact of training about the diagnosticity of distributional information in visual comparison tasks. We compared performance between novices given no training (uninformed novices; n = 32), accu-rate training (informed novices; n = 32) or inaccurate training (misinformed novices; n = 32) in Experiment 1; and between forensic examiners (n = 26), informed novices (n = 29) and unin-formed novices (n = 27) in Experiment 2. Across both experiments, forensic examiners and nov-ices performed significantly above chance in a visual comparison task where distributional learning was required for high performance. However, informed novices outperformed all par-ticipants and only their visual comparison performance was significantly associated with their distributional learning. It is likely that forensic examiners’ expertise is domain-specific and doesn’t generalise to novel visual comparison tasks. Nevertheless, diagnosticity training could be critical to the relationship between distributional learning and visual comparison performance.