scholarly journals What is quantum information? Information symmetry and mechanical motion

2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concept of quantum information is introduced as both normed superposition of two orthogonal subspaces of the separable complex Hilbert space and invariance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen.The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing a state of a quantum system) as its value as the bound variable.A qubit is equivalent to the generalization of ‘bit’ from the set of two equally probable alternatives to an infinite set of alternatives. Then, that Hilbert space is considered as a generalization of Peano arithmetic where any unit is substituted by a qubit and thus the set of natural number is mappable within any qubit as the complex internal structure of the unit or a different state of it. Thus, any mathematical structure being reducible to set theory is representable as a set of wave functions and a subspace of the separable complex Hilbert space, and it can be identified as the category of all categories for any functor represents an operator transforming a set (or subspace) of the separable complex Hilbert space into another. Thus, category theory is isomorphic to the Hilbert-space representation of set theory & Peano arithmetic as above.Given any value of quantum information, i.e. a point in the separable complex Hilbert space, it always admits two equally acceptable interpretations: the one is physical, the other is mathematical. The former is a wave function as the exhausted description of a certain state of a certain quantum system. The latter chooses a certain mathematical structure among a certain category. Thus there is no way to be distinguished a mathematical structure from a physical state for both are described exhaustedly as a value of quantum information. This statement in turn can be utilized to be defined quantum information by the identity of any mathematical structure to a physical state, and also vice versa. Further, that definition is equivalent to both standard definition as the normed superposition and invariance of Hamilton and Lagrange interpretation of mechanical motion introduced in the beginning of the paper.Then, the concept of information symmetry can be involved as the symmetry between three elements or two pairs of elements: Lagrange representation and each counterpart of the pair of Hamilton representation. The sense and meaning of information symmetry may be visualized by a single (quantum) bit and its interpretation as both (privileged) reference frame and the symmetries 𝑈𝑈(1), 𝑆𝑆𝑆 (2), and 𝑆𝑆𝑆 (3) of the Standard model.

2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.The main statement is formulated as follows: Any scientific theory admits isomorphism to some mathematical structure in a way constructive (that is not as a proof of “pure existence” in a mathematical sense).Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.The sketch of the proof is organized in five steps: (1) a generalization of epoché; (2) involving transfinite induction in the transition between Peano arithmetic and set theory; (3) discussing the finiteness of Peano arithmetic; (4) applying transfinite induction to Peano arithmetic; (5) discussing an arithmetical model of reality.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.The present paper follows a pathway grounded on Husserl’s phenomenology and “bracketing reality” to achieve the generalized arithmetic necessary for the principle to be founded in alternative ontology, in which there is no reality external to mathematics: reality is included within mathematics. That latter mathematics is able to self-found itself and can be called Hilbert mathematics in honour of Hilbert’s program for self-founding mathematics on the base of arithmetic.The principle of universal mathematizability is consistent to Hilbert mathematics, but not to Gödel mathematics. Consequently, its validity or rejection would resolve the problem which mathematics refers to our being; and vice versa: the choice between them for different reasons would confirm or refuse the principle as to the being.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. The Schrödinger equation in quantum mechanics is involved to illustrate that ontology. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed again in a new wayA few directions for future work can be: a rigorous formal proof of the principle as an independent axiom; the further development of information ontology consistent to both kinds of mathematics, but much more natural for Hilbert mathematics; the development of the information interpretation of quantum mechanics as a mathematical one for information ontology and thus Hilbert mathematics; the description of consciousness in terms of information ontology.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of matter-energy.” Dr Horton, his collaborator in the novel replies: “If the universe consists of energy and information, then the Trigger somehow alters the information envelope of certain substances –“.“Alters it, scrambles it, overwhelms it, destabilizes it” Brohier adds.There is a scientific debate whether or how far chemistry is fundamentally reducible to quantum mechanics. Nevertheless, the fact that many essential chemical properties and reactions are at least partly representable in terms of quantum mechanics is doubtless. For the quantum mechanics itself has been reformulated as a theory of a special kind of information, quantum information, chemistry might be in turn interpreted in the same terms.Wave function, the fundamental concept of quantum mechanics, can be equivalently defined as a series of qubits, eventually infinite. A qubit, being defined as the normed superposition of the two orthogonal subspaces of the complex Hilbert space, can be interpreted as a generalization of the standard bit of information as to infinite sets or series. All “forces” in the Standard model, which are furthermore essential for chemical transformations, are groups [U(1),SU(2),SU(3)] of the transformations of the complex Hilbert space and thus, of series of qubits.One can suggest that any chemical substances and changes are fundamentally representable as quantum information and its transformations. If entanglement is interpreted as a physical field, though any group above seems to be unattachable to it, it might be identified as the “Triger field”. It might cause a direct transformation of any chemical substance by from a remote distance. Is this possible in principle?


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this section we introduce the framework of quantum mechanics as it pertains to the types of systems we will consider for quantum computing. Here we also introduce the notion of a quantum bit or ‘qubit’, which is a fundamental concept for quantum computing. At the beginning of the twentieth century, it was believed by most that the laws of Newton and Maxwell were the correct laws of physics. By the 1930s, however, it had become apparent that these classical theories faced serious problems in trying to account for the observed results of certain experiments. As a result, a new mathematical framework for physics called quantum mechanics was formulated, and new theories of physics called quantum physics were developed in this framework. Quantum physics includes the physical theories of quantum electrodynamics and quantum field theory, but we do not need to know these physical theories in order to learn about quantum information. Quantum information is the result of reformulating information theory in this quantum framework. We saw in Section 1.6 an example of a two-state quantum system: a photon that is constrained to follow one of two distinguishable paths. We identified the two distinguishable paths with the 2-dimensional basis vectors and then noted that a general ‘path state’ of the photon can be described by a complex vector with |α0|2 +|α1|2 = 1. This simple example captures the essence of the first postulate, which tells us how physical states are represented in quantum mechanics. Depending on the degree of freedom (i.e. the type of state) of the system being considered, H may be infinite-dimensional. For example, if the state refers to the position of a particle that is free to occupy any point in some region of space, the associated Hilbert space is usually taken to be a continuous (and thus infinite-dimensional) space. It is worth noting that in practice, with finite resources, we cannot distinguish a continuous state space from one with a discrete state space having a sufficiently small minimum spacing between adjacent locations. For describing realistic models of quantum computation, we will typically only be interested in degrees of freedom for which the state is described by a vector in a finite-dimensional (complex) Hilbert space.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950013 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr, from the lattice-theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. On the other hand, no quantum systems seem to exist that are naturally described in a real or quaternionic Hilbert space. In a previous paper [23], we showed that any quantum system which is elementary from the viewpoint of the Poincaré symmetry group and it is initially described in a real Hilbert space, it can also be described within the standard complex Hilbert space framework. This complex description is unique and more precise than the real one as, for instance, in the complex description, all self-adjoint operators represent observables defined by the symmetry group. The complex picture fulfils the thesis of Solér’s theorem and permits the standard formulation of the quantum Noether’s theorem. The present work is devoted to investigate the remaining case, namely, the possibility of a description of a relativistic elementary quantum system in a quaternionic Hilbert space. Everything is done exploiting recent results of the quaternionic spectral theory that were independently developed. In the initial part of this work, we extend some results of group representation theory and von Neumann algebra theory from the real and complex cases to the quaternionic Hilbert space case. We prove the double commutant theorem also for quaternionic von Neumann algebras (whose proof requires a different procedure with respect to the real and complex cases) and we extend to the quaternionic case a result established in the previous paper concerning the classification of irreducible von Neumann algebras into three categories. In the second part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a quaternionic Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the quaternionic one, all self-adjoint operators represent observables in agreement with Solèr’s thesis, the standard quantum version of Noether theorem may be formulated and the notion of composite system may be given in terms of tensor product of elementary systems. In the third part of the paper, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. The overall conclusion is that relativistic elementary systems are naturally and better described in complex Hilbert spaces even if starting from a real or quaternionic Hilbert space formulation and this complex description is uniquely fixed by physics.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Any logic is represented as a certain collection of well-orderingsadmitting or not some algebraic structure such as a generalized lattice. Then universallogic should refer to the class of all subclasses of all well-orderings. One can construct amapping between Hilbert space and the class of all logics. Thus there exists acorrespondence between universal logic and the world if the latter is considered acollection of wave functions, as which the points in Hilbert space can beinterpreted. The correspondence can be further extended to the foundation ofmathematics by set theory and arithmetic, and thus to all mathematics.


2019 ◽  
Author(s):  
Muhammad Ali

This paper argues that the “Measurement Problem” is foundationally moot using the abstraction of “Color Guessing Game”. It has been reasoned that the preferred question to ask is, once taken the measurement, what is the certainty that the measured physical state of quantum system is the original intended state governed by absolute laws of nature. The certainty of the measured state |𝜙𝑘〉 of the physical system with wave function |𝜓〉=Σ𝑐𝑖|𝜙𝑖〉𝑖 being the original intended state is given by 𝑃(|𝜙𝑘〉)𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦=|𝑐𝑘|2Σ|𝑐𝑖|2𝑖∙[|𝑐𝑘|2Σ|𝑐𝑗|2𝑗]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡, given that the measurement probe’s wave function interaction with |𝜓〉 is unknown. It has been argued that measured state’s interactions with other quantum system corresponds to classical reality, which can be changed by the act of measurement


2021 ◽  
Author(s):  
Vasil Dinev Penchev

The paper investigates the understanding of quantum indistinguishability afterquantum information in comparison with the “classical” quantum mechanics based on theseparable complex Hilbert space. The two oppositions, correspondingly “distinguishability/ indistinguishability” and “classical / quantum”, available implicitly in the concept of quantumindistinguishability can be interpreted as two “missing” bits of classical information, whichare to be added after teleportation of quantum information to be restored the initial stateunambiguously. That new understanding of quantum indistinguishability is linked to thedistinction of classical (Maxwell-Boltzmann) versus quantum (either Fermi-Dirac orBose-Einstein) statistics. The latter can be generalized to classes of wave functions (“empty” qubits) and represented exhaustively in Hilbert arithmetic therefore connectible to the foundations of mathematics, more precisely, to the interrelations of propositional logic and set theory sharing the structure of Boolean algebra and two anti-isometric copies of Peano arithmetic.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed. An information interpretation of the Schrödinger equation is involved to illustrate the above problem.


Sign in / Sign up

Export Citation Format

Share Document