scholarly journals ARTificial intelligence raters: Neural networks for rating pictorial expression

2021 ◽  
Author(s):  
Thomas Gengenbach ◽  
Kerstin Schoch

Previous studies on classification of fine art show that features of paintings can be captured and categorized using machine learning approaches. This progress can also benefit art psychology by facilitating data collection on artworks without the need to recruit experts as raters. In this study a machine learning approach is used to predict the ratings of RizbA, a Rating instrument for two-dimensional pictorial works. Based on a pre-trained model, the algorithm was fine-tuned via transfer learning on 886 pictorial works by contemporary professional artists and non-professionals. As quality criterion, artificial intelligence raters (ART) are compared with generic raters (GR) created from the real human expert raters, using error rate and mean squared error (MSE). ART ratings have been found to have the same error range as randomly chosen human ratings. Therefore, they can be seen as equivalent to real human expert raters for almost all items in RizbA. Further training with more data will close the gap to the human raters on all items.

2019 ◽  
Author(s):  
Yinyin Wang ◽  
Mohieddin Jafari ◽  
Yun Tang ◽  
Jing Tang

AbstractPlant-derived nature products, known as herb formulas, have been commonly used in Traditional Chinese Medicine (TCM) for disease prevention and treatment. The herbs have been traditionally classified into different categories according to the TCM Organ systems known as Meridians. Despite the increasing knowledge on the active components of the herbs, the rationale of Meridian classification remains poorly understood. In this study, we took a machine learning approach to explore the classification of Meridian. We determined the molecule features for 646 herbs and their active components including structure-based fingerprints and ADME properties (absorption, distribution, metabolism and excretion), and found that the Meridian can be predicted by machine learning approaches with a top accuracy of 0.83. We also identified the top compound features that were important for the Meridian prediction. To the best of our knowledge, this is the first time that molecular properties of the herb compounds are associated with the TCM Meridians. Taken together, the machine learning approach may provide novel insights for the understanding of molecular evidence of Meridians in TCM.Author SummaryIn East Asia, plant-derived natural products, known as herb formulas, have been commonly used as Traditional Chinese Medicine (TCM) for disease prevention and treatment. According to the theory of TCM, herbs can be classified as different Meridians according to the balance of Yin and Yang, which are commonly understood as metaphysical concepts. Therefore, the scientific rational of Meridian classification remains poorly understood. The aim of our study was to provide a computational means to understand the classification of Meridians. We showed that the Meridians of herbs can be predicted by the molecular and chemical features of the ingredient compounds, suggesting that the Meridians indeed are associated with the properties of the compounds. Our work provided a novel chemoinformatics approach which may lead to a more systematic strategy to identify the mechanisms of action and active compounds for TCM herbs.


2011 ◽  
Vol 95 (1) ◽  
pp. 33-50 ◽  
Author(s):  
Kamlesh Dutta ◽  
Saroj Kaushik ◽  
Nupur Prakash

Machine Learning Approach for the Classification of Demonstrative Pronouns for Indirect Anaphora in Hindi News Items In this paper, we present machine learning approach for the classification indirect anaphora in Hindi corpus. The direct anaphora is able to find the noun phrase antecedent within a sentence or across few sentences. On the other hand indirect anaphora does not have explicit referent in the discourse. We suggest looking for certain patterns following the indirect anaphor and marking demonstrative pronoun as directly or indirectly anaphoric accordingly. Our focus of study is pronouns without noun phrase antecedent. We analyzed 177 news items having 1334 sentences, 780 demonstrative pronouns of which 97 (12.44 %) were indirectly anaphoric. The experiment with machine learning approaches for the classification of these pronouns based on the semantic cue provided by the collocation patterns following the pronoun is also carried out.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


2020 ◽  
Vol 54 (12) ◽  
pp. 942-947
Author(s):  
Pol Mac Aonghusa ◽  
Susan Michie

Abstract Background Artificial Intelligence (AI) is transforming the process of scientific research. AI, coupled with availability of large datasets and increasing computational power, is accelerating progress in areas such as genetics, climate change and astronomy [NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning, Vancouver, Canada; Hausen R, Robertson BE. Morpheus: A deep learning framework for the pixel-level analysis of astronomical image data. Astrophys J Suppl Ser. 2020;248:20; Dias R, Torkamani A. AI in clinical and genomic diagnostics. Genome Med. 2019;11:70.]. The application of AI in behavioral science is still in its infancy and realizing the promise of AI requires adapting current practices. Purposes By using AI to synthesize and interpret behavior change intervention evaluation report findings at a scale beyond human capability, the HBCP seeks to improve the efficiency and effectiveness of research activities. We explore challenges facing AI adoption in behavioral science through the lens of lessons learned during the Human Behaviour-Change Project (HBCP). Methods The project used an iterative cycle of development and testing of AI algorithms. Using a corpus of published research reports of randomized controlled trials of behavioral interventions, behavioral science experts annotated occurrences of interventions and outcomes. AI algorithms were trained to recognize natural language patterns associated with interventions and outcomes from the expert human annotations. Once trained, the AI algorithms were used to predict outcomes for interventions that were checked by behavioral scientists. Results Intervention reports contain many items of information needing to be extracted and these are expressed in hugely variable and idiosyncratic language used in research reports to convey information makes developing algorithms to extract all the information with near perfect accuracy impractical. However, statistical matching algorithms combined with advanced machine learning approaches created reasonably accurate outcome predictions from incomplete data. Conclusions AI holds promise for achieving the goal of predicting outcomes of behavior change interventions, based on information that is automatically extracted from intervention evaluation reports. This information can be used to train knowledge systems using machine learning and reasoning algorithms.


Author(s):  
Mamehgol Yousefi ◽  
Azmin Shakrine ◽  
Samsuzana bt. Abd Aziz ◽  
Syaril Azrad ◽  
Mohamed Mazmira ◽  
...  

Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


Sign in / Sign up

Export Citation Format

Share Document