scholarly journals No evidence of association between HRV and training load in a pool of professional athletes before, during, and after the first COVID-19 lockdown.

2021 ◽  
Author(s):  
Alejandro Javaloyes ◽  
Daniele Marinazzo ◽  
Daniel Sanabria ◽  
Manuel Moya-Ramón ◽  
José Ramón Lillo-Bevia ◽  
...  

PURPOSE: The COVID-19 crisis also affected elite sport severely, as elite athletes either stopped or drastically reduced their training regimen due to the lack of competitions and the mandatory lockdown. The aim of this study was to test whether heart rate variability was a reliable index of training load, which was dramatically altered due to the mandatory lockdown that occurred as a consequence of the COVID-19. METHODS: Training (volume and intensity) and heart rate variability of sixteen professional male (n = 8; body mass index = 22.2 ± 2.0) and female cyclists (n = 8; body mass index = 20.3 ± 1.1) before (4 weeks), during (7 weeks), and after (4 weeks) the mandatory lockdown in Spain were monitored. RESULTS: Individual analyses showed that the mandatory lockdown caused reliable reductions in training volume in 13 subjects (-96 to -7 % reductions in minutes), that were followed by an increase after the lockdown in all subjects (5 to 270%). In contrast, changes in training load were not homogenous across individuals. Moreover, such changes were not matched by comparable variations in heart rate variability. A mixed model of the heart rate variability as a function of training volume and intensity revealed no significant modulation by these two variables, and subject specific effects on the slope. CONCLUSIONS: In this study, we did not find evidence of association between heart rate variability and training load and/or intensity as many previous reports have suggested, even if training conditions changed dramatically overnight.

2021 ◽  
Author(s):  
Alejandro Javaloyes ◽  
Daniel Sanabria ◽  
Manuel Moya-Ramón ◽  
Jose R. Lillo-Bevia ◽  
Manuel Mateo March

PURPOSE: The COVID-19 crisis also affected elite sport severely, as elite athletes either stopped or drastically reduced their training regimen due to the lack of competitions and the mandatory lockdown. The aim of this study was to test whether heart rate variability was a reliable index of training load, which was dramatically altered due to the mandatory lockdown that occurred as a consequence of the COVID-19. METHODS: Training (volume and intensity) and heart rate variability of sixteen professional male (n = 8; body mass index = 22.2 ± 2.0) and female cyclists (n = 8; body mass index = 20.3 ± 1.1) before (4 weeks), during (7 weeks), and after (4 weeks) the mandatory lockdown were monitored. RESULTS: Individual analyses showed that the mandatory lockdown caused reliable reductions in training volume in 13 subjects (-96 to -7 % reductions in minutes), that were followed by an increase after the lockdown in all subjects (5 to 270%). In contrast, changes in training intensity were not homogenous across individuals. Crucially, changes in heart rate variability neither follow training load nor intensity at the individual level. CONCLUSIONS: Heart rate variability did not seem to be a reliable proxy of training load and/or intensity as many previous reports have suggested, even if training conditions changed dramatically overnight.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Daizhi Yang ◽  
Jinhua Yan ◽  
Hongrong Deng ◽  
Xubin Yang ◽  
Sihui Luo ◽  
...  

Background. To comprehensively assess the effects of metformin added to insulin on metabolic control, insulin sensitivity, and cardiovascular autonomic function in adolescents with type 1 diabetes. Materials and Methods. This was an exploratory, crossover, randomized trial conducted in adolescents with type 1 diabetes aged 12-18 years old. Participants were randomly received metformin (≤1000 mg/d) added to insulin for 24 weeks followed by insulin monotherapy for a subsequent 24 weeks or vice versa. Blood pressure, body mass index, insulin dose, estimated insulin sensitivity, glycated hemoglobin A1c (HbA1c), and lipid profiles were measured, with a 72-hour continuous glucose monitoring and 24-hour Holter monitoring performed at baseline, 24, and 50 weeks for the assessments of glucose variability and heart rate variability. Results. Seventeen patients with mean ± SD age 14.4 ± 2.3   years , body mass index 18.17 ± 1.81   kg / m 2 , median (IQR) diabetes duration 4.50 (3.58, 6.92) years, and HbA1c 9.0% (8.5%, 9.4%) were enrolled. The between-group difference in HbA1c of 0.28% (95% CI -0.39 to 0.95%) was not significant ( P = 0.40 ). Changes in body mass index, insulin dose, blood pressure, lipid profiles, and estimated insulin sensitivity were similar for metformin add-on vs. insulin monotherapy. Glucose variability also did not differ. Compared with insulin monotherapy, metformin add-on significantly increased multiple heart rate variability parameters. Conclusions. Metformin added to insulin did not improve metabolic control or glucose variability in lean/normal-weight adolescents with type 1 diabetes. However, metformin added to insulin significantly increased heart rate variability, suggesting that metformin might improve cardiovascular autonomic function in this population.


Author(s):  
Rohan Edmonds ◽  
Julian Egan-Shuttler ◽  
Stephen J. Ives

Heart rate variability (HRV) is a reputable estimate of cardiac autonomic function used across multiple athletic populations to document the cardiac autonomic responses to sport demands. However, there is a knowledge gap of HRV responses in female youth rowers. Thus, the purpose of this study was to measure HRV weekly, over a 15-week training period, covering pre-season and up to competition in youth female rowers, in order to understand the physiological response to long-term training and discern how fluctuations in HRV may relate to performance in this population. Measures of heart rate and heart rate variability were recorded before training each Friday over the monitoring period in seven athletes. Analysis of heart rate variability focused on time domain indices, the standard deviation of all normal to normal R–R wave intervals, and the root mean square of successive differences as markers of cardiac parasympathetic modulation. Training load was quantified by multiplying the rating of perceived exertion of the weeks training and training duration. A decrease was identified in cardiac parasympathetic modulation as the season progressed (Effect Size (Cohen’s d) = −0.34 to −0.8, weeks 6 and 11–15), despite no significant relationship between training load and heart rate variability. Factors outside of training may further compound the reduction in heart rate variability, with further monitoring of external stressors (e.g., school) in adolescent athletes.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Tiina Föhr ◽  
Julia Pietilä ◽  
Elina Helander ◽  
Tero Myllymäki ◽  
Harri Lindholm ◽  
...  

2000 ◽  
Vol 32 (10) ◽  
pp. 1729-1736 ◽  
Author(s):  
Vincent PICHOT ◽  
Fr??d??ric ROCHE ◽  
Jean-Michel GASPOZ ◽  
Franck ENJOLRAS ◽  
Anestis ANTONIADIS ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 39-46 ◽  
Author(s):  
M.G. Queiroz ◽  
G. Arsa ◽  
D.A. Rezende ◽  
L.C.J.L. Sousa ◽  
F.R. Oliveira ◽  
...  

2017 ◽  
Vol 12 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Moritz Schumann ◽  
Javier Botella ◽  
Laura Karavirta ◽  
Keijo Häkkinen

Purpose:To compare the effects of a standardized endurance-training program with individualized endurance training modified based on the cumulative training load provided by the Polar training-load feature.Methods:After 12 wk of similar training, 24 recreationally endurance-trained men were matched to a training-load-guided (TL, n = 10) or standardized (ST, n = 14) group and continued training for 12 wk. In TL, training sessions were individually chosen daily based on an estimated cumulative training load, whereas in ST the training was standardized with 4–6 sessions/wk. Endurance performance (shortest 1000-m running time during an incremental field test of 6 × 1000 m) and heart-rate variability (HRV) were measured every 4 wk, and maximal oxygen consumption (VO2max) was measured during an incremental treadmill test every 12 wk.Results:During weeks 1–12, similar changes in VO2max and 1000-m time were observed in TL (+7% ± 4%, P = .004 and –6% ± 4%, P = .069) and ST (+5% ± 7%, P = .019 and –8% ± 5%, P < .001). During wk 13–24, VO2max statistically increased in ST only (3% ± 4%, P = .034). The 1000-m time decreased in TL during wk 13–24 (–9% ± 5%, P = .011), but in ST only during wk 13–20 (–3% ± 2%, P = .003). The overall changes in VO2max and 1000-m time during wk 0–24 were similar in TL (+7% ± 4%, P = .001 and –9% ± 5%, P = .011) and ST (+10% ± 7%, P < .001 and –13% ± 5%, P < .001). No between-groups differences in total training volume and frequency were observed. HRV remained statistically unaltered in both groups.Conclusions:The main finding was that training performed according to the cumulative training load led to improvements in endurance performance similar to those with standardized endurance training in recreational endurance runners.


2015 ◽  
Vol 34 (12) ◽  
pp. 789
Author(s):  
Mustafa Gulgun ◽  
Muzaffer Kursat Fidanci

Sign in / Sign up

Export Citation Format

Share Document