Performance evaluation of inter-cell interference prediction in massive MIMO

2021 ◽  
Vol 3 (1) ◽  
pp. 28-36
Author(s):  
Abayomi Isiaka O. Yussuff ◽  
◽  
Abdul-Rasaq A. Bakare ◽  

This paper presents inter-cell interference prediction in massive multiple input multiple output. The rapid demand for widespread multimedia services notwithstanding the deployment of 4G in Lagos, Nigeria and the urgent need to upgrade to 5G networks with downlink and uplink data capacities of not less than 300 and 60 Mbps, respectively for at least 95% penetration rate at any instantaneous time; there is a possibility of experiencing crosstalk and adjacent inter-cell interference within the receiving antennas. 5G inter-cell interference prediction scheme that employs LTE performance index using locally sourced data from Huawei Nigeria limited was presented. The performances of the currently deployed LTE network were evaluated by employing performance metrics such as uplink and downlink capacities and recommending a possible inter-cell interference mitigation technique to be implemented in the deployment of 5G network in Lagos. The identified key performance metrics used include over the air emulation, carrier to interference plus noise ratio, peak RLC throughput, coverage probability, and the map-based model. Hence, ICIC static coordination algorithm, which comprise NOICIC, Hard FFR, PFR, SFR and SFFR were analyzed. With static ICIC algorithm, the coverage probability was 78% for receiving more than 20 kbps, with cell-edge users using resources of centre-users and with edge-users of neighbouring cells using different resource block; therefore reducing interference and consequently increasing throughput when there is static ICIC coordination. Implementing the static ICIC schemes on the 5G network when deployed in Lagos will improve the average downlink throughput over what is currently attainable with the 4G network in use at the moment

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Panagiotis K. Gkonis ◽  
Maria A. Seimeni ◽  
Nikolaos P. Asimakis ◽  
Dimitra I. Kaklamani ◽  
Iakovos S. Venieris

The goal of the study presented in this paper is to investigate the performance of a new subcarrier allocation strategy for Orthogonal Frequency Division Multiple Access (OFDMA) multicellular networks which employ Multiple Input Multiple Output (MIMO) architecture. For this reason, a hybrid system-link level simulator has been developed executing independent Monte Carlo (MC) simulations in parallel. Up to two tiers of cells around the central cell are taken into consideration and increased loading per cell. The derived results indicate that this strategy can provide up to 12% capacity gain for 16-QAM modulation and two tiers of cells around the central cell in a symmetric2×2MIMO configuration. This gain is derived when comparing the proposed strategy to the traditional approach of allocating subcarriers that maximize only the desired user’s signal.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Premalatha J. ◽  
Sheela D.

Purpose This paper aims to present the design of a compact vertically polarized four-element UWB antenna suitable for MIMO communications. Design/methodology/approach The unit cell antenna is constructed using a square ring radiator excited through a stepped impedance feed. The proposed antenna covers the Ultra-wideband (UWB) spectrum ranging from 2.2 to 12.3 GHz. The isolation between the unit cell antennas in the array is enhanced using a simple microstrip line resonator. The decoupling element is connected to the ground through a via. Findings The proposed scheme offers at least 16 dB improvement in the port-to-port coupling. Furthermore, the four-element antenna array is constructed using a specific interlocking scheme. The proposed antenna array’s Multiple Input Multiple Output (MIMO) performance metrics are analyzed. Originality/value By suitably selecting the excitation port, directional radiation patterns can be realized. The combined radiation pattern covers 360 degrees. A prototype antenna array is fabricated, and the simulation results are verified using real-time experiments. The proposed antenna is a suitable candidate for shark fin housing in automotive communications.


Author(s):  
Abla Bedoui ◽  
Mohamed Et-tolba

Offset quadrature amplitude modulation-based filter bank multicarrier (FBMC/OQAM) is among the promising waveforms for future wireless communication systems. This is due to its flexible spectrum usage and high spectral efficiency compared with the conventional multicarrier schemes. However, with OQAM modulation, the FBMC/OQAM signals are not orthogonal in the imaginary field. This causes a significant intrinsic interference, which is an obstacle to apply multiple input multiple output (MIMO) technology with FBMC/OQAM. In this paper, we propose a deep neural network (DNN)-based approach to deal with the imaginary interference, and enable the application of MIMO technique with FBMC/OQAM. We show, by simulations, that the proposed approach provides good performance in terms of bit error rate (BER).


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1944
Author(s):  
Ahmad Kamal Hassan ◽  
Ziaul Haq Abbas ◽  
Ghulam Abbas ◽  
Thar Baker

We consider the problem of simultaneous diagonalization of Hermitian matrices for the desired and co-channel interference terms of millimeter-wave (mmWave) multi-user multiple-input multiple-output systems. The joint unitary eigenvectors and the corresponding eigenvalues are known to assist in the mathematical tractability of key performance metrics, such as outage probability, ergodic capacity, and spectral efficiency. We formulate the signal-to-interference-plus-noise ratio in a canonical quadratic form and subsume the digital baseband beamforming vectors in the weight matrices of channels at the transmitter side. Next, a real scalar objective function is defined, which quantifies the correlation loss due to joint-diagonalization. The objective function is then maximized using baseband beamforming under the hardware constraints of the mmWave system. Through simulations, the proposed beamforming algorithm is evaluated by employing several non-linear optimization sub-routines, and it is shown that the “active-set” approach results in improved summary statistics both for the correlation metric and for the time complexity. We also reflect on the effect of optimization on the channel scatterers in mmWave systems.


2014 ◽  
Vol 696 ◽  
pp. 183-190
Author(s):  
Yue Heng Li ◽  
Ming Hao Fu ◽  
Li Wang ◽  
Mei Yan Ju ◽  
Ping Huang

This paper focuses its research work on the capacity and outage performances of a distributed multiple-input multiple-output (DMIMO) system in a multi-cell environment. For this purpose, the multi-cell DMIMO structure is modeled first, and based on this model, the so-called blanket communication and selective communication schemes are compared, and the formula of the output signal to interference plus noise ratio (SINR) of the above two schemes are given to illustrate the way of an inter-cell interference affecting the system performance. Then the expressions of the average capacity and outage probability are derived by using the probability density function (PDF) of the output SINR in the preferred selective communication scheme with some necessary approximations. Finally, the computer simulations are provided to explore the possible rule of upper layer network scheduling in overcoming the inter-cell interferences and in optimizing the capacity and outage performances in the DMIMO systems.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1300
Author(s):  
Daniyal Ali Sehrai ◽  
Muhammad Asif ◽  
Nosherwan Shoaib ◽  
Muhammad Ibrar ◽  
Saeedullah Jan ◽  
...  

This paper presents a multiple-input multiple-output (MIMO) antenna system for millimeter-wave 5G wireless communication services. The proposed MIMO configuration is composed of four antenna elements, where each antenna possesses an HP-shaped configuration that features simple configuration and excellent performance. The proposed MIMO design can operate at a very wideband of 36.83–40.0 GHz (measured). Furthermore, the proposed MIMO antenna attains a peak gain of 6.5 dB with a maximum element-isolation of −45 dB. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain, and channel capacity (CCL) are analyzed, which demonstrate good characteristics across the operating band. The proposed antenna radiates efficiently with a radiation efficiency of above 80% at the desired frequency band which makes it a potential contender for the upcoming communication applications. The proposed design simulations were performed in the computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one.


2020 ◽  
Author(s):  
Tewelgn Kebede Engda ◽  
Yihenew Wondie ◽  
Johannes Steinbrunn

Abstract A considerable amount of enabling technologies are being explored in the era of fifth generation (5G) mobile system. The dream is to build a wireless network that substantially improves the existing mobile networks in all performance metrics. To address this 5G design targets, massive MIMO (multiple input multiple output) and mmWave (millimeter wave) communication are also candidate technologies. Luckily, in many respects these two technologies share a symbiotic integration. Accordingly, a logical step is to integrate mmWave communications and massive MIMO to form mmWave-massive MIMO which substantially increases user throughput, improve spectral and energy efficiencies, increase the capacity of mobile networks and achieve high multiplexing gains. Thus, this work analyses the concepts, performances, comparison and discussion of these technologies called: massive MIMO, mmWave Communications and mmWave-massive MIMO systems jointly. Besides, outcomes of extensive researches, emerging trends together with their respective benefits, challenges, proposed solutions and their comparative analysis is addressed. The performance of hybrid analog-digital beamforming architecture with a fully digital and analog beamforming techniques are also analyzed. Analytical and simulation results show that the low-complexity hybrid analog-digital precoding achieves all round comparable precoding gains for mmWave-Massive MIMO technology.


2021 ◽  
Vol 2 (4) ◽  
pp. 47-55
Author(s):  
Aidong Yang ◽  
Xinlang Yue ◽  
Mohan Wu ◽  
Ye Ouyang

Beamforming is an essential technology in 5G Massive Multiple-Input Multiple-Output (MMIMO) communications, which are subject to many impairments due to the nature of wireless transmission channel. The Inter-Cell Interference (ICI) is one of the main obstacles faced by 5G communications due to frequency-reuse technologies. However, finding the optimal beamforming parameter to minimize the ICI requires infeasible prior network or channel information. In this paper, we propose a dynamic Q-learning beamforming method for ICI mitigation in the 5G downlink that does not require prior network or channel knowledge. Compared with a traditional beamforming method and other industrial Reinforcement Learning (RL) methods, the proposed method has lower computational complexity and better convergence efficiency. Performance analysis shows the quality of service improvement in terms of Signal-to-Interference-plus-Noise-Ratio (SINR) and the robustness towards different environments.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 372 ◽  
Author(s):  
Ahmed Al-hubaishi ◽  
Nor Noordin ◽  
Aduwati Sali ◽  
Shamala Subramaniam ◽  
Ali Mohammed Mansoor

The reuse of the same pilot group across cells to address bandwidth limitations in a network has resulted in pilot contamination. This causes severe inter-cell interference at the targeted cell. Pilot contamination is associated with multicell massive multiple-input multiple-output (MIMO) systems which degrades the system performance even when extra arrays of antennas are added to the network. In this paper, we propose an efficient pilot assignment (EPA) scheme to address this issue by maximizing the minimum uplink rate of the target cell’s users. To achieve this, we exploit the large-scale characteristics of the fading channel to minimize the amount of outgoing inter-cell interference at the target cell. Results from the simulation show that the EPA scheme outperforms both the conventional and the smart pilot assignment (SPA) schemes by reducing the effect of inter-cell interference. These results, show that the EPA scheme has significantly improved the system performance in terms of achievable uplink rate and cumulative distribution function (CDF) for both signal-to-interference-plus-noise ratio (SINR), and uplink rate.


Sign in / Sign up

Export Citation Format

Share Document