floating potential
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Han Mingyue ◽  
Yang Luo ◽  
Liuhe Li ◽  
Hua Li ◽  
Ye Xu ◽  
...  

Abstract Investigating the ion dynamics in the emerging bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) discharge is necessary and important for broadening its industrial applications. Recently, an optimized plasma source operating the BP-HiPIMS with an auxiliary anode and a solenoidal coil is proposed to enhance the plasma flux and energy, named as ACBP-HiPIMS (‘A’-anode, ‘C’-coil). In the present work, the temporal evolutions of the ion velocity distribution functions (IVDF) in BP-HiPIMS and ACBP-HiPIMS discharges are measured using a retarding field energy analyser (RFEA). For the BP-HiPIMS discharge, operated at various positive pulse voltages U+, the temporal evolutions of IVDFs illustrate that there are two high-energy peaks, E1 and E2, which are both lower than the applied U+. The ratio of the mean ion energy Ei,mean to the applied U+ is around 0.55-0.6 at various U+. In ACBP-HiPIMS discharge, the IVDF evolution shows three distinguishable stages which has the similar evolution trend with the floating potential Vf on the RFEA frontplate: (i) the stable stage with two high-energy peaks (E2 and E3 with energy respectively lower and higher than the applied U+ amplitude) when the floating potential Vf is close to the applied positive pulse voltage; (ii) the transition stage with low-energy populations when the Vf drops by ~20 V within ~10 μs; and (iii) the oscillation stage with alternating E2 and E3 populations and ever-present E1 population when the Vf slighly descreases unitl to the end of positive pulse. The comparison of IVDFs in BP-HiPIMS and ACBP-HiPIMS suggests that both the mean ion energy and high-energy ion flux have been effectively improved in ACBP-HiPIMS discharge. The formation of floating potential drop is explored using the Langmuir probe which may be attributed to the establishment of anode double layer structure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2264
Author(s):  
Nithin Joy ◽  
Anne-Marie Kietzig

Nanoparticles generated during laser material processing are often seen as annoying side products, yet they might find useful application upon proper collection. We present a parametric study to identify the dominant factors in nanoparticle removal and collection with the goal of establishing an in situ removal method during femtosecond laser machining. Several target materials of different electrical resistivity, such as Cu, Ti, and Si were laser machined at a relatively high laser fluence. Machining was performed under three different charge conditions, i.e., machining without an externally applied charge (alike atmospheric pulsed laser deposition (PLD)) was compared to machining with a floating potential and with an applied field. Thereby, we investigated the influence of three different charge conditions on the behavior of laser-generated nanoparticles, in particular considering plume deflection, nanoparticle accumulation on a collector plate and their redeposition onto the target. We found that both strategies, machining under a floating potential or under an applied field, were effective for collecting laser-generated nanoparticles. The applied field condition led to the strongest confinement of the nanoparticle plume and tightest resulting nanoparticle collection pattern. Raster-scanning direction was found to influence the nanoparticle collection pattern and ablation depth. However, the laser-processed target surface remained unaffected by the chosen nanoparticle collection strategy. We conclude that machining under a floating potential or an applied field is a promising setup for removing and collecting nanoparticles during the machining process, and thus provides an outlook to circular waste-free laser process design.


2021 ◽  
pp. 26-32
Author(s):  
Alexander Abramov

Devices for direct measurement of the plasma potential and floating potential in a gas dis-charge in a reactive ion-plasma etching system are presented. The action of the devices devel-oped for this purpose is based on the creation of a local magnetic field that allows purposeful-ly changing the conditions of ambipolar diffusion of charged particles. This makes it possible to contact the probe with the body of a positive plasma column without the appearance of a floating potential on it. The results of measuring the plasma potential by the proposed and al-ternative methods are compared


2021 ◽  
pp. 127521
Author(s):  
K. Jayaprakash ◽  
Prince Alex ◽  
A. Saravanan ◽  
M. Perumal ◽  
Thangjam Rishikanta Singh ◽  
...  

2021 ◽  
Author(s):  
Sylvain Ranvier ◽  
Johan De Keyser ◽  
Jean-Pierre Lebreton

<p>The Sweeping Langmuir Probe (SLP) instrument on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO) has been developed at the Royal Belgian Institute for Space Aeronomy.  PICASSO, an ESA in-orbit demonstrator launched in September 2020, is a triple unit CubeSat orbiting at about 540 km altitude with 97 degrees inclination. The SLP instrument includes four independent cylindrical probes that are used to measure the plasma density and electron temperature as well as the floating potential of the spacecraft. Along the orbit of PICASSO the plasma density is expected to fluctuate over a wide range, from about 1e8/m<sup>3</sup> at high latitude up to more than 1e12/m<sup>3</sup> at low/mid latitude. SLP can measure plasma density from 1e8/m<sup>3</sup> to 1e13/m<sup>3</sup>. The electron temperature is expected to lie between approximately 1000 K and 10.000 K. Given the high inclination of the orbit, SLP will allow a global monitoring of the ionosphere. Using the traditional sweeping mode, the maximum spatial resolution is of the order of a few hundred meters for the plasma density, electron temperature and spacecraft potential. With the fixed-bias mode, the electron density can be measured with a spatial resolution of about 1.5 m. The main goals are to study the ionosphere-plasmasphere coupling, the subauroral ionosphere and corresponding magnetospheric features together with auroral structures and polar caps, by combining SLP data with other complementary data sources (space- or ground-based instruments). The first results from SLP will be presented.</p>


2021 ◽  
Vol 406 ◽  
pp. 126650
Author(s):  
M. Naeem ◽  
V.C. Fortaleza ◽  
P.L.C. Serra ◽  
C.L. Lima ◽  
T.H.C. Costa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document