scholarly journals Complex roots of polynomials and their computation with the help of Scientific Calculators

BIBECHANA ◽  
2012 ◽  
Vol 9 ◽  
pp. 18-27
Author(s):  
Mohd Yusuf Yasin

Real numbers are something which are associated with the practical life. This number system is one dimensional. Situations arise when the real numbers fail to provide a solution. Perhaps the Italian mathematician Gerolamo Cardano is the first known mathematician who pointed out the necessity of imaginary and complex numbers. Complex numbers are now a vital part of sciences and are used in various branches of engineering, technology, electromagnetism, quantum theory, chaos theory etc. A complex number constitutes a real number along with an imaginary number that lies on the quadrature axis and gives an additional dimension to the number system. Therefore any computation based on complex numbers, is usually complex because both the real and imaginary parts of the number are to be simultaneously dealt with. Modern scientific calculators are capable of performing on a wide range of functions on complex numbers in their COMP and CMPLX modes with an equal ease as with the real numbers. In this work, the use of scientific calculators (Casio brand) for efficient determination of complex roots of various types of equations is discussed. DOI: http://dx.doi.org/10.3126/bibechana.v9i0.7148 BIBECHANA 9 (2013) 18-27

1976 ◽  
Vol 69 (1) ◽  
pp. 53-54
Author(s):  
Susan J. Grant ◽  
Ward R. Stewart

Most students are faced with the task of solving the equation x2 + 1 = 0 over the real numbers at some time in their algebra classes. After they substitute values for x unsuccessfully, they usually attempt to solve the equivalent equation x2 = -1. They soon realize that it is impossible to square a real number and obtain a negative number. At this point their teacher may define the imaginary number i to be and then proceed to develop the complex number system.


2020 ◽  
Author(s):  
Balram A Shah

This research introduces a new scope in mathematics with new numbers that already exist in everyday mathematics but very difficult to get noticed. These numbers are termed as advanced numbers where entire real numbers, including complex numbers are the subset of this number’s universe. Dividing by zero results in multiple solutions so it is the best practice to not divide by zero, but what if dividing by zero have a unique solution? These numbers carry additional details about every number that it produces unique results for every indeterminate form, it allows us to divide by zero and even allows us to deal with infinite values uniquely. So, related to this number, theories, framework, axioms, theorems and formulas are established and some problems are solved which had no confirmed solutions in the past. Problems solved in this article will help us to understand little more about imaginary number, calculus, infinite summation series, negative factorial, Euler’s number e and mathematical constant π in very new prospective. With these numbers, we also understand that zero and one are very sophisticated numbers than any numbers and can lead to form any number. Advance number system simply opens a new horizon for entire mathematics and holds so much detailed precision about every number that it may require computation intelligence and power in certain situations to evaluate it.


2008 ◽  
Vol 92 (525) ◽  
pp. 431-436 ◽  
Author(s):  
Sandra Pulver

Are there solutions of the equation x2 + 1 = 0 ? Carl Fredrich Gauss (1777–1855) conjectured that there was a solution and that it was the square root of - 1 . But since the squares of all real numbers, positive or negative, are positive, Gauss introduced a fanciful idea. His solution to this equation was , which he named i. He integrated i with the real numbers to form a set known as , the complex numbers, where each element in that set was of the form a + bi, where a, . Gauss illustrated this on a graph, the horizontal axis became the real axis and represented the real coefficient, while the vertical axis became the imaginary axis and represented the imaginary coefficient.


Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz

The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with n ∈ N. However, this method is limited since it diverges for the case in which polynomials only have complex roots if a real initial condition is taken. In the present work, we explain an iterative method that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-R) Method, which has the ability to enter the space of complex numbers given a real initial condition, which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-Raphson method.


Author(s):  
Алексеенко ◽  
A. Alekseenko ◽  
Лихачева ◽  
M. Likhacheva

The article is devoted to the study of the peculiarities of real numbers in the discipline "Algebra and analysis" in the secondary school. The theme of "Real numbers" is not easy to understand and often causes difficulties for students. However, the study of this topic is now being given enough attention and time. The consequence is a lack of understanding of students and school-leavers, what constitutes the real numbers, irrational numbers. At the same time the notion of a real number is required for further successful study of mathematics. To improve the efficiency of studying the topic and form a clear idea about the different numbers offered to add significantly to the material of modern textbooks, increase the number of hours in the study of real numbers, as well as to include in the school course of algebra topics "Complex numbers" and "Algebraic structures".


2020 ◽  
pp. 93-103
Author(s):  
Marcel Danesi

What kind of number is √−1? In a way that parallels the unexpected discovery of √2 by the Pythagoreans, when this number surfaced as a solution to a quadratic equation, mathematicians asked themselves what it could possibly mean. Not knowing what to call it, René Descartes named it an imaginary number. Like the irrationals, the discovery of i led to new ideas and discoveries. One of these was complex numbers—numbers having the form (a + bi), where a and b are real numbers and i is √−1. Incredibly, complex numbers turn out to have many applications. They are used to describe electric circuits and electromagnetic radiation and they are fundamental to quantum theory in physics. This chapter deals with imaginary numbers, which constitute another of the great ideas of mathematics that have not only changed the course of mathematics but also of human history.


2020 ◽  
pp. 299-327
Author(s):  
Charles McCarty

The chapter features, first, a critical presentation of Brouwer’s intuitionistic doctrines concerning logic, the real numbers, and continuity in the real number system, including his Principle for Numbers and Continuity Theorem. This is followed by a parallel examination of Hermann Weyl’s quasi-intuitionistic views on logic, continuity, and the real number system, views inspired by (but grossly misrepresenting) ideas of Brouwer. The whole business wraps up with an attempt to place Brouwer’s and Weyl’s efforts within the trajectory of informed thinking, during the late 19th and early 20th centuries, on the subjects of continua, magnitudes, and quantities.


1982 ◽  
Vol 92 (1) ◽  
pp. 139-161 ◽  
Author(s):  
Hideaki Ōshima

The purpose of this note is to determine some unstable James numbers of Stiefel manifolds. We denote the real numbers by R, the complex numbers by C, and the quaternions by H. Let F be one of these fields with the usual norm, and d = dimRF. Let On, k = On, k(F) be the Stiefel manifold of all orthonormal k–frames in Fn, and q: On, k → Sdn−1 the bundle projection which associates with each frame its last vector. Then the James number O{n, k} = OF{n, k} is defined as the index of q* πdn−1(On, k) in πdn−1(Sdn−1). We already know when O{n, k} is 1 (cf. (1), (2), (3), (13), (33)), and also the value of OK{n, k} (cf. (1), (13), (15), (34)). In this note we shall consider the complex and quaternionic cases. For earlier work see (11), (17), (23), (27), (29), (31) and (32). In (27) we defined the stable James number , which was a divisor of O{n, k}. Following James we shall use the notations X{n, k}, Xs{n, k}, W{n, k} and Ws{n, k} instead of OH{n, k}, , Oc{n, k} and respectively. In (27) we noticed that O{n, k} = Os{n, k} if n ≥ 2k– 1, and determined Xs{n, k} for 1 ≤ k ≤ 4, and also Ws{n, k} for 1 ≤ k ≤ 8. On the other hand Sigrist (31) calculated W{n, k} for 1 ≤ k ≤ 4. He informed the author that W{6,4} was not 4 but 8. Since Ws{6,4} = 4 (cf. § 5 below) this yields that the unstable James number does not equal the stable one in general.


Author(s):  
Juan Ramirez

We present the real number system as a natural generalization of the natural numbers. First, we prove the co-finite topology, $Cof(\mathbb N)$, is isomorphic to the natural numbers. Then, we generalize these results to describe the continuum $[0,1]$. Then we prove the power set $2^{\mathbb Z}$ contains a subset isomorphic to the non-negative real numbers, with all its defining structure of operations and order. Finally, we provide two different constructions of the entire real number line. We see that the power set $2^{\mathbb N}$ can be given the defining structure of $\mathbb R$. The constructions here provided give simple rules for calculating addition, multiplication, subtraction, division, powers and rational powers of real numbers, and logarithms. The supremum and infimum are explicitly constructed by means of a well defined algorithm that ends in denumerable steps. In section 5 we give evidence our construction of $\mathbb N$ and $\mathbb R$ are canonical; these constructions are as natural as possible. In the same section, we propose a new axiomatic basis for analysis. In the last section we provide a series of graphic representations and physical models that can be used to represent the real number system. We conclude that the system of real numbers is completely defined by the order structure of $\mathbb N$.}


10.37236/749 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Avi Berman ◽  
Shmuel Friedland ◽  
Leslie Hogben ◽  
Uriel G. Rothblum ◽  
Bryan Shader

We use a technique based on matroids to construct two nonzero patterns $Z_1$ and $Z_2$ such that the minimum rank of matrices described by $Z_1$ is less over the complex numbers than over the real numbers, and the minimum rank of matrices described by $Z_2$ is less over the real numbers than over the rational numbers. The latter example provides a counterexample to a conjecture by Arav, Hall, Koyucu, Li and Rao about rational realization of minimum rank of sign patterns. Using $Z_1$ and $Z_2$, we construct symmetric patterns, equivalent to graphs $G_1$ and $G_2$, with the analogous minimum rank properties. We also discuss issues of computational complexity related to minimum rank.


Sign in / Sign up

Export Citation Format

Share Document