scholarly journals First-Principles Study of Arsenic Atom, Its Irons and Molecule

2015 ◽  
Vol 5 ◽  
pp. 17-21
Author(s):  
N. R. Sapkota ◽  
J. J. Nakarmi

In the present work, we have performed the ground state energy calculations for arsenic atom, its ions and molecule using Hartree-Fock (HF) cluster approximation. The correlation effects in the HF calculations have been taken into account by considering the Møller-Plesset second order perturbation (MP2) and truncated form of Configurational Interaction (CI) that includes single, double, and quadruple excitations, also known as QCISD implemented by the Gaussian 03 sets of program. Our study shows that the ground state of arsenic atom is a quadrate state i.e., charge zero and multiplicity four with ground state energy - 60796.66 eV in MP2 levels of calculation with cc-pVDZ basis set. We have performed the first-principles calculation to study the first electron affinity and ionization energies of arsenic atom up to tenth level. The first-principles calculation has been also carried out to study the equilibrium configuration of arsenic molecule (As2). The bond length and binding energy of arsenic molecule (As2) is found to be 2.15 Å and 3.65 eV in MP2 levels of approximation with basis set 6-311G(3df). Our study has been extended to calculate electrostatic potential for arsenic molecule (As2), whose values at global maxima and minima are found to be 0.30 eV and - 0.20 eV respectively. The calculation of HOMO-LUMO energy gap for the arsenic molecule (As2) is almost independent of choice of basis sets as well as levels of approximation. The HF, MP2, and QCISD calculations also have been carried out to estimate the electric field gradient (EFG) parameters for the excited nuclear state in arsenic molecule (As2). Our results show that the HF, MP2, and QCISD values for the EFG parameters do not differ significantly, indicating that electron correlation effects do not contribute for the determination of EFG parameter.The Himalayan Physics Year 5, Vol. 5, Kartik 2071 (Nov 2014)Page : 17-21

1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Simeon Hellerman ◽  
Nozomu Kobayashi ◽  
Shunsuke Maeda ◽  
Masataka Watanabe

Abstract As a sequel to previous work, we extend the study of the ground state configuration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1/ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ1/ρ2 ≪ 1. We also compute, at fixed set of charges, ρ1, ρ2, the ground state energy and the two-point function(s) associated with this inhomogeneous configuration on the torus. The ground state energy was found to scale (ρ1 + ρ2)3/2, as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge.


2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


Sign in / Sign up

Export Citation Format

Share Document