scholarly journals A GIS Approach for Rapid Identification of Run-of-River (RoR) Hydropower Potential Site in Watershed: A case study of Bhote Koshi Watershed, Nepal

2018 ◽  
Vol 23 ◽  
pp. 48-55 ◽  
Author(s):  
Nagendra Kayastha ◽  
Umesh Singh ◽  
Krishna Prasad Dulal

A new Geographical Information System (GIS) approach is proposed to assess primary potential hydropower site, explicitly identifying highly possible hydropower locations spatially, over a large area in a short time. The results from this approach were validated with an existing hydropower site in the Bhote Koshi catchment in Nepal. Altogether 885 number of searches made along the river streams each covered a circular area of radius 10 km, with distance between headwork and power houses of 500 m intervals, thus, identified 297 highly potential sites out of total 2655 during evaluation. The results indicate that, 52 sub-catchments have potential areas and seven specific hydropower locations overlapped with existing hydropower projects. This approach is suitable for initial screening only and the produced results significantly facilitate further in-depth feasibility study to engineering and economic analysis for hydropower potential of the basin. HYDRO Nepal JournalJournal of Water, Energy and Environment Issue: 23Year: 2018

1970 ◽  
Vol 7 ◽  
pp. 8-13 ◽  
Author(s):  
Raghunath Jha

The total hydropower potential of Nepal was assessed as 83,500 MW in 1966 by Dr. Hari Man Shrestha dur-ing his PhD research work in former USSR. Since then, no further study has been done in this feld. The hydropower potential estimate has been used by Nepal Electricity Authority (NEA), Water and Energy Commission Secretariat (WECS) and Department of Electricity Development (DOED) for power development, licensing and policy making. However, keeping in view recent advancements in computer technology that offer many benefits to the field of water resources and the importance of power estimation in Nepal, Dr. Shrestha’s estimate needs further review and updat-ing. The present study has mainly used the hydro-meteorological data of Department of Hydrology and Meteorology (DHM) for hydrological analysis of all the rivers in Nepal including the three big rivers, viz., Saptakoshi, Narayani and Karnali, and other medium and small rivers. Incorporating GIS and the Hydropower Model that has specifcally been developed by the author, the power potential and annual energy estimate on an run-of-the-river (ROR) basis of the entire country has been worked out. The result shows that the power potential and annual energy estimates of Na-rayani, Saptakoshi and Karnali River basins at Q40% (fow exceedence) and 80% efficiency are 17800, 17008, 15661 MW and 113373, 108817, 102324 GWh, respectively. The Mahakali River would yield only 2262 MW of hydropower and 14981 GWh of energy annually. The other water sources in Nepal would have a total power potential of 1105 MW and a combined annual energy of 7043 GWh. Thus, the total hydropower potential and corresponding annual energy capacity of Nepal on a ROR basis at Q40%, and 80% efficiency is 53,836 MW and 346538 GWh, respectively.Key words: Hydropower potential; Run-of-River (ROR); GIS; Hydropower Model; NepalDOI: 10.3126/hn.v7i0.4226Hydro Nepal Journal of Water, Energy and Environment Vol 7, July, 2010Page: 8-13Uploaded date: 31 January, 2011


2021 ◽  
Vol 1 (1) ◽  
pp. 106-128
Author(s):  
Sunil Bista ◽  
Umesh Singh ◽  
Nagendra Kayastha ◽  
Bhola NS Ghimire ◽  
Rocky Talchabhadel

Advancements in Geographical Information System (GIS), Remote Sensing (RS) technology, hydrologic modeling and availability of wider coverage hydrometeorological data have facilitated the use of GIS and hydrological modelling tools in studies related to hydropower potential. Digital Elevation Model (DEM) is the primary data required for these tools. They have become more accessible and many are freely available. These DEMs have different resolution and their errors vary due to their primary data acquisition techniques and processing methods. However, their effects on the hydropower potential assessment are less investigated. This study evaluates the effects of 6 freely available DEMs: ALOS 12.5 m, SRTM 90 m, SRTM 30 m, ASTER G-DEM version-3 30 m, AW3D 30 m and Cartosat-1 version-3 30 m on the Gross Run-off-River Hydropower Potential (GRHP) assessment, using GIS and hydrological modelling tools. West Rapti River (WRR) basin in Nepal was chosen for the case study. Soil and Water Tool (SWAT) hydrological model, coupled with GIS was used to discretize the WRR basin into several sub-basins/streams. Flow at the inlet and outlet of streams were estimated from the SWAT model whereas the topographic head was extracted from the DEMs. The GRHP of the streams were computed using the estimated stream flow and the topographic head for flows at 40% to 60% Probability of Exceedance (PoE). The total potential of the basin was computed by summing up the potential of all streams. The GRHP of WRR basin for flows at 40% PoE was estimated as 512 MW for ALOS 12.5 m resolution DEM, referred as a base case in this study. The GRHP estimated from the remaining DEMs showed the variation of less than 6% compared to the base case. The topographic head was found to be sensitive with respect to the DEM resolution and the highest variations were observed in the main river channels.


2016 ◽  
Vol 167 (5) ◽  
pp. 294-301
Author(s):  
Leo Bont

Optimal layout of a forest road network The road network is the backbone of forest management. When creating or redesigning a forest road network, one important question is how to shape the layout, this means to fix the spatial arrangement and the dimensioning standard of the roads. We consider two kinds of layout problems. First, new forest road network in an area without any such development yet, and second, redesign of existing road network for actual requirements. For each problem situation, we will present a method that allows to detect automatically the optimal road and harvesting layout. The method aims to identify a road network that concurrently minimizes the harvesting cost, the road network cost (construction and maintenance) and the hauling cost over the entire life cycle. Ecological issues can be considered as well. The method will be presented and discussed with the help of two case studies. The main benefit of the application of optimization tools consists in an objective-based planning, which allows to check and compare different scenarios and objectives within a short time. The responses coming from the case study regions were highly positive: practitioners suggest to make those methods a standard practice and to further develop the prototype to a user-friendly expert software.


2019 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Nitin Mundhe

Floods are natural risk with a very high frequency, which causes to environmental, social, economic and human losses. The floods in the town happen mainly due to human made activities about the blockage of natural drainage, haphazard construction of roads, building, and high rainfall intensity. Detailed maps showing flood vulnerability areas are helpful in management of flood hazards. Therefore, present research focused on identifying flood vulnerability zones in the Pune City using multi-criteria decision-making approach in Geographical Information System (GIS) and inputs from remotely sensed imageries. Other input data considered for preparing base maps are census details, City maps, and fieldworks. The Pune City classified in to four flood vulnerability classes essential for flood risk management. About 5 per cent area shows high vulnerability for floods in localities namely Wakdewadi, some part of the Shivajinagar, Sangamwadi, Aundh, and Baner with high risk.


2021 ◽  
Vol 13 (6) ◽  
pp. 3246
Author(s):  
Zoe Slattery ◽  
Richard Fenner

Building on the existing literature, this study examines whether specific drivers of forest fragmentation cause particular fragmentation characteristics, and how these characteristics can be linked to their effects on forest-dwelling species. This research uses Landsat remote imaging to examine the changing patterns of forests. It focuses on areas which have undergone a high level of a specific fragmentation driver, in particular either agricultural expansion or commodity-driven deforestation. Seven municipalities in the states of Rondônia and Mato Grosso in Brazil are selected as case study areas, as these states experienced a high level of commodity-driven deforestation and agricultural expansion respectively. Land cover maps of each municipality are created using the Geographical Information System software ArcGIS Spatial Analyst extension. The resulting categorical maps are input into Fragstats fragmentation software to calculate quantifiable fragmentation metrics for each municipality. To determine the effects that these characteristics are likely to cause, this study uses a literature review to determine how species traits affect their responses to forest fragmentation. Results indicate that, in areas that underwent agricultural expansion, the remaining forest patches became more complex in shape with longer edges and lost a large amount of core area. This negatively affects species which are either highly dispersive or specialist to core forest habitat. In areas that underwent commodity-driven deforestation, it was more likely that forest patches would become less aggregated and create disjunct core areas. This negatively affects smaller, sedentary animals which do not naturally travel long distances. This study is significant in that it links individual fragmentation drivers to their landscape characteristics, and in turn uses these to predict effects on species with particular traits. This information will prove useful for forest managers, particularly in the case study municipalities examined in this study, in deciding which species require further protection measures. The methodology could be applied to other drivers of forest fragmentation such as forest fires.


Author(s):  
Julio Cezar Santos ◽  
Wagner Santos ◽  
Guilherme Cestaro ◽  
Marcio Zamboti Fortes ◽  
Henrique Henriques

AbstractThe growing demand for quality in the Energy Distribution Service, both by consumers and by regulatory agencies, obliges most distribution utilities to apply technologies that can be easily implemented and produce results in a short term horizon. The telecontrol technology is an essential tool every time it is necessary to fast restore the energy supply. This technology, which is completely supervised and controlled by the system operation center, allows the fast detection of a fault at a distance and switch an equipment without the aid of the operating crew, thus reducing the time that the power supply is unavailable. The present paper describes a Telecontrol Project, incorporated in an electric energy distribution utility in Brazil and compares the results in quality improvement with others usual investment actions, such as operating and maintenance procedures, laterals protection and network reinforcement. This paper shows, analyzing the results, that to improve the reliability indexes in a short time, when the company’s economic recovery is more important, the application of remotely controlled switch is more effective.


1996 ◽  
Vol 2 (1) ◽  
pp. 35-40
Author(s):  
C.N. Claar
Keyword(s):  

1976 ◽  
Vol 6 (4) ◽  
pp. 288-291 ◽  
Author(s):  
R. A. Ward ◽  
P. C. Farrell ◽  
D. J. Tiller ◽  
J. S. Horvath ◽  
J. M. Freeman

Sign in / Sign up

Export Citation Format

Share Document