scholarly journals Distribution and Fractionation of Heavy Metals in Sediments of Karra River, Hetauda, Nepal

2015 ◽  
Vol 19 (2) ◽  
pp. 123-128 ◽  
Author(s):  
Sadhana Pradhanang

A five-step sequential extraction procedure was applied for the determination of the distribution of four elements (Cr, Mn, Fe, and Ni) in sediment of the Karra River. Sediment samples were collected from 16 different sites in the Karra River (upstream, industrial belt, downstream). The distribution of trace metals among exchangeable, carbonate, reducible, oxidizable and residual fractions were determined. The total concentration of metals varies in the range of Cr 72–4339.54 mg kg?1, Mn 22–411.93 mg kg?1, Fe 2967.23-32423.0 mg kg?1 and Ni 31.70-180.74 mg kg?1. The accuracy evaluated by comparing total trace metal concentrations with the sum of the five individual fractions proved to be satisfactory. The chemical speciation of Cr, Mn, Fe, and Ni in most sampling stations were in the order of residual > reducible > oxidazable > carbonate> exchangeable. Fractionation analysis showed that dominant metals are in residual fraction. The highest metal concentrations were observed at the most polluted sites of the industrial belt. High concentration of chromium was found in the Fe-Mn oxide and organic fraction in some of the sites of industrial belt.Journal of Institute of Science and Technology, 2014, 19(2): 123-128

1995 ◽  
Vol 32 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Valérie Colandini ◽  
Michel Legret ◽  
Yves Brosseaud ◽  
Jean-Daniel Baladès

Porous pavements infiltrated with stormwater are faced with clogging problems: runoff particles seep and clog the pervious surface layer of these structures. Clogging material samples (in the form of sludge) have been collected in cleaning operations on the pervious asphalt. This study aims at characterizing these materials, particle size distribution, heavy metal contents by particle size, and studying interactions between metals and particles. A sequential extraction procedure proposed by the experts of the Community Bureau of Reference (B.C.R.) was applied to provide information about heavy metal distribution on particles and to evaluate interaction strength, and consequently potential metal mobility when chemical variations occurred in the environment. Mainly made up of sand, the materials are polluted with lead, copper, zinc and cadmium. The concentrations appeared to be linked with road traffic intensity. The heavy metal contents by particle size showed that the finer are the particles, the higher are the heavy metal concentrations. Heavy metals were found potentially labile; metals contents in the residual fraction (mineral fraction) represented less than 20 % of the total concentration. Cadmium and zinc were apparently more labile than lead and copper.


2014 ◽  
Vol 97 (4) ◽  
pp. 1034-1038 ◽  
Author(s):  
Yunus Emre Unsal ◽  
Mustafa Tuzen ◽  
Mustafa Soylak

Abstract Total concentration of metal ions at trace levels does not give sufficient information about toxicity and biological availability of these elements in fertilizer samples. In the presented work, a sequential extraction procedure modified by the European Community Bureau of Reference (BCR) was applied to fractionate Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, and Zn levels in two fertilizer samples collected from cooperative agricultural retailers. The fractions extracted were exchangeable/dilute acid soluble, reducible bound to Fe/Mn oxides, oxidizable bound to organic matter and sulfides, and residual. The determination of analyte elements was done by flame atomic absorption spectrometry. The accuracy of the procedure was validated with BCR-701 sediment certified reference material. The RSD of the procedure was less than 10%.


1980 ◽  
Vol 17 (1) ◽  
pp. 90-105 ◽  
Author(s):  
A. Tessier ◽  
P. G. C. Campbell ◽  
M. Bisson

Water and suspended sediment samples were collected at 12 stations on the Yamaska and St. François Rivers, located in southeastern Quebec, and were analyzed for the trace metals Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn. The suspended sediment samples were subjected to a sequential extraction procedure designed to partition the particulate trace metals into five fractions: (1) exchangeable; (2) bound to carbonates; (3) bound to Fe–Mn oxides; (4) bound to organic matter; and (5) residual.Although suspended sediment levels as well as total soluble and particulate trace metal concentrations were highly variable in time and space, speciation patterns for each metal proved reasonably constant. Very small proportions of all metals, except Cd and Mn, were found in the exchangeable fraction, whereas high levels of all metals were present in the residual fraction; Fe–Mn oxides and organic matter constituted important transport phases for most metals. Deviations from this general behaviour were occasioned by man-induced perturbations (e.g., inputs of municipal sewage or mine waste water). At stations influenced by such factors, total particulate metal concentrations increased and the relative contribution of the residual fraction decreased. The trace metal content of fraction 3 proved to be particularly sensitive to anthropogenic inputs; other phases acting as trace metal sinks included those liberated in fractions 1 (Cd, Cu, Ni, Zn), 2(Cu, Ni, Zn), and 4(Cu, Ni).


Author(s):  
Mutia Oktarina Permai Yenny ◽  
Arief Hartono ◽  
Syaiful Anwar ◽  
Yumei Kang

Heavy metals have been reported to accumulate in sediment of Citarum River. The measurement of total heavy metals may not be able to provide information about the exact dimension of pollution, thus the determination of different fractions assumed great importance. This study was performed to determine chemical fractions of heavy metals (Cu, Ni, Cr, Pb and Cd) in sediment collected at 8 locations from Citarum River. The sequential extraction procedure was used to extract heavy metals in water-soluble, acid-soluble, MnO occluded, organically bound, FeO occluded and residual fraction in sediment. Bioavailability and potential ecological risk level of heavy metals were evaluated based on bioavailability factor (BF) and risk assessment code (RAC) method. The results showed that Cu, Ni, Cr were mostly in residual form, indicate those from geological sources. Cu had low bioavailability and no risk in all sediment samples of Citarum River. Ni and Cr each was found to have risk at 2 locations. Pb and Cd were found dominantly in non-residual fraction, suggest those from anthropogenic sources. BF and RAC analysis of Pb and Cd suggest that there is a potential risk to the aquatic environment.


2019 ◽  
Vol 24 (1) ◽  
pp. 23
Author(s):  
Lestari Lestari ◽  
Fitri Budiyanto

The assessment of the biological availability of metals is rarely used only by knowing the total concentration of the metal. Therefore, six sediment samples from Muara Angke, Teluk Jakarta were assessed the chemical speciation of heavy metals. This study aims to determine metal speciation using the BCR sequential extraction procedure and to determine metal speciation to evaluate bioavailability in the sediments of Muara Angke, Jakarta Bay. In sediment from Muara Angke, the ability to move sequence of heavy metals studied was Pb>Zn>Cu>Ni. The mostly accumulated in the non-residual fraction of the total concentrations are Cu, Ni, Pb and Zn which indicated that the mobility and anthropogenic inputs of these metals in Muara Angke were quite high. The Risk Assessment Code (RAC) reveal that Zn and Ni at almost station exist in exchangeable and a fraction of carbonate-bound and therefore high-risk category. Most of the Cu at most of the station is in the oxidizable fraction, except a small portion found at all station is in the exchangeable fraction and fraction of carbonate-bound thus posing a low risk for the waters environment. The patterns of Pb speciation show no to low risk to the waters environment. However, metal observations in the waters are necessary because they are persistent and can accumulate which threatening the water environment.


2008 ◽  
Vol 62 (2) ◽  
Author(s):  
Ján Medved’ ◽  
Milan Kališ ◽  
Ingrid Hagarová ◽  
Peter Matúš ◽  
Marek Bujdoš ◽  
...  

AbstractDetermination of thallium in polluted environmental samples and their extracts obtained by a modified BCR three-step sequential extraction procedure was used to study thallium distribution and mobility in the monitored polluted area affected by acidification (Šobov, Central Slovakia). The results of fractionation applied to 5 soil certified reference materials and 14 environmental samples show that the vast majority of thallium occurred in the residual fraction. This means that highly toxic thallium is strongly entrapped in the parent rock materials remains immobile and its environmental toxicity is therefore reduced. The limit of detection for thallium in the studied fractions was lower than 0.050 mg kg−1, the precision (RSD) of the ultratrace determination of thallium in the studied fractions was better than 17 % and the accuracy of the used method was verified by analyzing certified reference materials.


Author(s):  
P. M. Kahara ◽  
J. Murungi ◽  
J. K. Kiptoo ◽  
G. Nyaga

Open dumpsites are one of the main sources of heavy metals and as a result, lots of research has been undertaken on the pseudo-total content of heavy metals in dumpsite soils, but little research on the forms in which they exist. The current research was carried out to determine levels of chromium, lead and cadmium in the various fractions of Dandora dumpsite soil and how they are fractionated in the topsoil and subsoil horizons. Samples were obtained from eight sites with depths of (0-30 cm) and (30-60 cm) for topsoil and bottom soils respectively. The modified Community Bureau of Reference (BCR) sequential extraction procedure was used and metal analysis performed using flame atomic absorption spectrophotometry. The metals (lead, chromium and cadmium) total concentration (µg/g) in the upper soil profile ranged from 42.22 to 1096.21, 38.26 to 180.60 and 11.23 to 44.22 while the lower soil profiles were 54.19 to 239.28, 30.56 to 76.48 and 9.47 to 22.56, respectively. The concentration of lead in various fractions of the upper soil profile followed the order; reducible > oxidisable > residual > exchangeable, while that of chromium was residual > oxidisable > reducible > exchangeable. Cadmium followed the order exchangeable > residual > reducible > oxidisable. The percentage of the metals in non-residual fraction were Pb (78%), Cr (58.7%) and Cd (70%). Their mobility factors were (Pb) 39.7 (Cr) 7.75 and (Cd) 5.02 in the upper soil profiles. Thus, the results suggest that Dandora dumpsite is highly polluted with the selected heavy metals.


Author(s):  
Irma Cruz Gavilán García ◽  
Georgina Fernández Villagómez ◽  
Alejandro Menchaca Pérez ◽  
Luis Adrian Barraza Torres ◽  
Arturo Gavilán García

This work is focused in studying the inclusion of chemical speciation in the characterization of mining tailings in Mexican regulation with a case study in Parral, Chihuahua, Mexico. In this site, high concentration of lead and arsenic in tailings located in the surroundings represent a high concern to the local population. The total concentration of Pb in the samples ranged from 78.03 ± 2.67 to 5748 ± 263.63 [mg kg<sup>-1</sup>] and from 5.49 ± 0.43 to 509.84 ± 40.18 [mg kg<sup>-1</sup>] for As. Chemical speciation was tested for samples that exceeded the limits of the Mexican Regulation using sequential extractions proposed by the Bureau Community of Reference (BCR) to obtain the distribution of lead and arsenic in four different fractions. The set of extractions consisted in the extractable/exchangeable fraction (F1), the reducible fraction (F2), the metals bound to organic matter and sulfides (F3) those under oxidizing conditions, and the residual fraction (RF). The results show that 70% of lead is found in F1 and F2 fractions while 20% is found in F3 fraction. In case of arsenic, 60% is found in residual fraction, 25% in fraction F3 and less than 15% in fractions F1 and F2.


Sign in / Sign up

Export Citation Format

Share Document