scholarly journals Conservation Agriculture Mitigates the Effects of Climate Change

2021 ◽  
Vol 7 ◽  
pp. 122-132
Author(s):  
Tika Bahadur Karki ◽  
Pankaj Gyawaly

Intensive tillage based conventional agriculture have high global warming potential. Alternative to this, conservation agriculture (CA) systems utilize soils for the production of crops by reducing excessive tillage, maintaining crop residue on the soil surface, and adoption of crop rotations. The paper attempts to review the findings of CA based experiments under different cropping systems within and outside of the country. It has been found that CA increases and sustains the crop productivities, mitigates green house gas emissions from agriculture by enhancing soil carbon sequestration, improving soil nutrient status and water use efficiencies, and reducing fuel consumption. Mainstreaming of CA systems in Nepal is hindered by its knowledge gap, inadequate farm machineries and tools, small holdings, poor infrastructures, and lack of CA friendly policy support. Therefore, there is an urgent need to test, verify and scale-out the CA based technologies by Nepal Agricultural Research Council (NARC) across the different agro-ecologies through farmer-centered partnership among the international institutions, public and private sector of Nepal.  

2021 ◽  
Vol 14 ◽  
pp. 117862212098002
Author(s):  
Pouria Ataei ◽  
Hassan Sadighi ◽  
Thomas Aenis ◽  
Mohammad Chizari ◽  
Enayat Abbasi

Different countries face diverse challenges for Conservation Agriculture (CA) development. The main purpose of this study was to examine the challenges of applying CA in Iran from the perspective of experts and farmers. A focus group method was used to investigate the challenges. The research sample consisting of farmers and experts of CA in different provinces includes those 19 experts and 15 farmers. Inductive content analysis and coding (open, axial, and selective coding) were employed to analyze the farmers’ and experts’ discussions. The findings showed that the challenges of applying CA in the studied provinces could be divided into 6 general categories: institutional-infrastructure (7 concepts), economic (5 concepts), training-research (2 concepts), environmental (4 concepts), mechanization (2 concepts), and cognitive (2 concepts) challenges. The economic and institutional-infrastructure challenges were the most frequent related to applying CA. It can be concluded that to solve the challenges of applying CA, it is necessary to link various sectors of government (the Ministry of Agriculture), education and research (Agricultural Research, Education and Extension Organization), and industry together. But farmers themselves are also a major contributor to meet the challenges of CA development through participation in planning CA project and training-extension programs. Therefore, farmers’ communities should also pave the way for a transition from conventional agriculture to CA with their participation.


Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 269 ◽  
Author(s):  
Joseph B. Yavitt ◽  
S. Joseph Wright

Although the hot, moist tropics in the Republic of Panama receive more than 2000 mm of rain per year, soils dry considerably during the 4-month dry season. We examined the effect of seasonal drought by irrigating two 2.25-ha plots of lowland tropical moist forest on Barro Colorado Island (BCI) for 5 consecutive dry seasons. Irrigation decreased soil permeability and improved soil nutrient status, which prompted this study of soil charge characteristics in the irrigated and control plots. Soil was an Alfisol, and thus it was not clear a prioriwhether variable-charge or permanent-charge components dominated. Surface soil (0–15 cm) had a pH(H2O) of 5.5 and pH(KCl) of 4.8. Subsurface soil (30–45 cm) had a pH(H2O) of 4.8 and a pH(KCl) of 3.5. The point of zero salt effect (PZSE), measured by titration, varied from 3.7 to 5.0 in surface soil and from 3.5 to 4.2 in subsurface soil. Variable charge of surface soil was 2.6 cmolc/kg.pH unit after the dry season in April versus 3.2 cmolc/kg.pH unit after the wet season in December in both control and dry-season irrigated plots, reflecting seasonal differences in pH and PZSE. The point of zero net charge (PZNC), measured by ion retention, was at pH <2.0, indicating that permanent-charge components dominated the soil surface charge. Five years of dry-season irrigation resulted in pH(H2O) increasing by 0.6 units and pH(KCl) increasing by 0.2 units. As well, irrigation increased the amount of permanent charge and cation retention, leading to less sorption of phosphate and sulfate. The results have important ecological implications, showing mechanistically how wetter conditions affected soil surface charge leading to improved soil nutrient status. permanent charge, soil pH, tropical forest soil, variable charge, water regime.


1997 ◽  
Vol 12 (3) ◽  
pp. 81-88 ◽  
Author(s):  
Deborah S. Page-Dumroese ◽  
Martin F. Jurgensen ◽  
Alan E. Harvey ◽  
Russell T. Graham ◽  
Jonalea R. Tonn

Abstract Conifer regeneration in western North America is often hampered by low soil moisture, poor soil nutrient status, and competing vegetation. Three site preparation techniques were evaluated at two different elevations in northern Idaho as potential remedies for these problems: (1) soil mounds without control of competing vegetation, (2) soil mounds with herbicidal control of competing vegetation, and (3) scalping (removal of soil surface organic horizons and mineral topsoil). Treatments were evaluated for effects on soil nutrient levels, soil physical properties, and the growth of Douglas-fir (Pseudotsuga menziesii var. glauca) and western white pine (Pinus monticola) seedlings. Both species generally grew best when planted in the mounded treatment with competing vegetation removed and worst after scalping. Mounding with herbicide application resulted in the lowest bulk density, best seedling growth, and increased water availability. Mounding may be a viable site preparation method in the Inland Northwest on less productive sites that have severe competition. Scalping, especially when competition was not a problem, generally did not produce favorable seedling growth responses. Scalping may also reduce longer term seedling growth by removing surface organic matter. West. J. Appl. For. 12(3):81-88.


Author(s):  
Arpit Suryawanshi ◽  
H. K. Rai ◽  
Aditi Chourasia ◽  
G. D. Sharma

The experimental field study was conducted at Borlaug Institute for South Asia (BISA) Research Farm, Lakhanwada, Jabalpur, Madhya Pradesh, India to evaluate the soil carbon fractions (very labile, labile, less labile and non-labile or recalcitrant carbon) in different land use practices with soil depths under cropping systems in Vertisols after harvest of Kharif and Rabi season crops of year 2015-16 and 2016-17. The experiment was conducted under Split plot design considering land use practices as main plot treatments [L1: Uncultivated, L2: rice-wheat system with conventional agriculture (CT), L3: rice-wheat system with conservation agriculture (CA), L4: soybean-wheat system with CT, L5: soybean-wheat system with CA, L6: maize-wheat system with CT and L7: maize-wheat system with CA] and depth (0-5 cm, 5-15 cm and 15-30 cm) as sub-plot treatments replicated thrice. Very labile carbon fraction was obtained highest in L3 (rice-wheat system with CA) and lowest under L6 (maize -wheat system with CT) treatment after harvest of Kharif and Rabi season crops during 2015-16 and 2016-17and it was significantly higher at 0-5 cm soil depth  than those in 5-15 cm and 15-30 cm soil depths. Similar trends were also obtained in case of labile, less labile and non-labile fraction of carbon i.e. the applied land use practices had significant effect on all the carbon fractions under study and found to be maximum under L3 (R-W system with CA) and minimum in L6: (M-W system with CT) treatment after harvest of both the season crops during both years of experiment. Whereas, the interaction effect of land use practices and soil depths on the carbon fractions was found statistically non-significant during both the seasons and years.


2021 ◽  
Vol 7 (34) ◽  
pp. eabg6995
Author(s):  
Raphaël A. Wittwer ◽  
S. Franz Bender ◽  
Kyle Hartman ◽  
Sofia Hydbom ◽  
Ruy A. A. Lima ◽  
...  

Ecosystems provide multiple services to humans. However, agricultural systems are usually evaluated on their productivity and economic performance, and a systematic and quantitative assessment of the multifunctionality of agroecosystems including environmental services is missing. Using a long-term farming system experiment, we evaluated and compared the agronomic, economic, and ecological performance of the most widespread arable cropping systems in Europe: organic, conservation, and conventional agriculture. We analyzed 43 agroecosystem properties and determined overall agroecosystem multifunctionality. We show that organic and conservation agriculture promoted ecosystem multifunctionality, especially by enhancing regulating and supporting services, including biodiversity preservation, soil and water quality, and climate mitigation. In contrast, conventional cropping showed reduced multifunctionality but delivered highest yield. Organic production resulted in higher economic performance, thanks to higher product prices and additional support payments. Our results demonstrate that different cropping systems provide opposing services, enforcing the productivity–environmental protection dilemma for agroecosystem functioning.


2018 ◽  
Vol 10 (4) ◽  
pp. 320-332
Author(s):  
H.K. Prasai ◽  
S.K. Sah ◽  
A.K. Gautam ◽  
A.P. Regmi

Abstract. The adoption of Conservation agriculture (CA) contributes to sustainable production and its advantages include lower inputs and stable yields. This study was conducted in the research field of Regional Agricultural Research Station, Bhagetada, Dipayal, Doti during 2014 and 2015 to identify the effect of CA on grain yield and income of maize in Maize based cropping system. Both conservation and conventional agricultural (ConvA) practices were evaluated on two maize based cropping systems namely maize-wheat-mungbean (M-W-MB) and maize-lentil-mungbean (M-L-MB). For this purpose two maize varieties namely Raj Kumar and Arun-2 were used. The average productivity of maize under M-L-MB cropping system was 1.6% higher (5.75 t/ha) than M-W-MB cropping system (5.66 t/ha). The average grain yield of maize under CA was 16.7% higher (6.15 t/ha) than ConvA (5.27 t/ha). Rajkumar produced 43% higher average grain yield (6.73 t/ha) than Arun-2 variety (4.69 t/ha). The average net benefit was slightly higher (US$ 597.33/ha) under M-L-MB cropping system than M-W-MB cropping system (US$ 573.89/ha). Similarly, the average net benefit from CA was 102% higher (US$ 783.67/ha) than ConvA (US$ 386.79/ha). Rajkumar variety gave 127% higher average net benefit (US$ 813.49/ha) than Arun-2 (US$ 357.81/ha). The average benefit - cost (B:C) ratio of M-L-MB cropping system was slightly higher (1.72) than the average B:C ratio of M-W-MB cropping system (1.70). The average B:C ratio of CA was 42% higher (2.01) than ConvA (1.41). The average B:C ratio of Rajkumar variety was found 33% higher (1.95) than Arun-2 (1.46). The higher grain yield, net profit and B:C ratio were found in CA practices under M-L-MB cropping system and Rajkumar variety. This study suggests that hybrid maize planting and the adoption of M-L-MB cropping system should be used to increase grain yield and economic performance under CA practices.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 168
Author(s):  
John Sariah ◽  
Daniel Rodriguez

The agricultural sector in Tanzania is mainly dryland and dominated by smallholder farmers. Unreliable rainfall, short than normal duration of cropping season and fluctuations of onset and end of cropping season are main challenges facing farmers. The increased frequency and intensity of droughts, unpredictability of weather, shorter than normal duration of cropping seasons have significant impact on farmers’ productivity, profitability and resilience. This paper report study on Conservation agriculture for Sustainable Intensification (CASI) technology package tested on farm for productive, resilient and sustainable smallholder maize-legume cropping systems across five districts in Tanzania. Three practices namely Conservation practice (CA), Current applied recommended practice (CONV. or sometimes referred to as IMPROV) and primitive farmers practice (FP) were compared in experimental plots on farmers’ fields. Improved (DT maize and Pigeonpeas) was intercropped in all practices. Only CA and CONV practices were statistically compared, whereas FP was for farmer’s visual observations and comparisons. Data recorded were, soil carbon, moisture, yields and economic analysis. Results showed that, the average maize yields for four seasons in CA and CONV doubled and for tripled. An average of 30.5% hours of labour were saved in CASI relative to non CASI practice. The benefit cost ratio of maize-pigeonpea intercrops under CASI was 2.1 as compared to 1.4 in conventional agriculture investments. The institutionalization of CASI at local and national policy decision levels will be required for the scaling of CASI technologies across Tanzania.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 558A-558
Author(s):  
Chad M. Hutchinson ◽  
Milton E. McGiffen

The goals of sustainable agriculture include decreased reliance on synthetic nutrients and pesticides and improved environmental quality for the long-term benefit of the land, livelihood of growers, and their communities. Cropping systems that maximize these goals use alternative fertility and pest control options to produce crops with minimal soil erosion and nutrient leaching. Cropping system elements that can help achieve these goals include: reduced tillage, cover crops, and organic soil amendments. Cover crops are grown before the cash crop and used to replenish the soil with nitrogen and organic matter. Cover crops often also influence pest populations and can be selected based on site-specific growing conditions. Cover crops can be mulched on the soil surface to prevent erosion and weed emergence or can be tilled directly into the soil to incorporate nitrogen and organic matter. Green waste mulch is an increasingly used soil amendment. Many municipalities are encouraging farmers to use green waste mulch in farming systems as an alternative to green waste disposal in landfills. Reduced tillage was once restricted to large-seeded field crops but recent technical advances have made it a feasible option for vegetables and other horticultural crops. Alternative farming practices; however, are still only used by a small minority of growers. Increases in price for organic produce and changes in laws governing farming operations may increase adoption of alternatives to conventional agriculture.


Author(s):  
Ravindra Kumar ◽  
A. B. Turkhede ◽  
Shrimohan Meena ◽  
R. K. Nagar

The field experiment was conducted during kharif season of 2014-15. The experiment was laid out in randomized block design, replicated thrice with eleven cropping systems. Significantly highest NPK uptake (38.97, 13.39 and 34.85 kg ha-1 respectively) was recorded in the cropping system of sole cotton. Significantly highest available N (222.75 kg ha-1) was recorded in sole blackgram and maximum available P (21.52 kg ha-1) was recorded in cotton + cowpea intercropping system. Cotton + clusterbean intercropping system was recorded significantly highest available K (355.60 kg/h


Sign in / Sign up

Export Citation Format

Share Document