scholarly journals Theoretical Study of Plasma Using Different Dimension of Hollow Cathode

2019 ◽  
Vol 5 (1) ◽  
pp. 30-34
Author(s):  
L. N. Mishra ◽  
K. Khanal

This article deals about the theoretical study on DC hollow cathode glow discharge using different hollow cathode geometry. The mechanism of discharge is analyzed at various gas pressure and radial configuration. The dependence of temperature on gas pressure has been elucidated with the help of Scotty limit. Discharge behavior with radius has also been explained. It is revealed that floating potential increases as gas pressure increases whereas plasma potential decreases as gas pressure increases. This theoretical work resembles with the experimentally measured results. This work might be useful for the plasma processing for industrial purposes.

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefan Karatodorov ◽  
Valentin Mihailov ◽  
Margarita Grozeva

AbstractThe emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.


2020 ◽  
Vol 60 (1) ◽  
pp. 015501
Author(s):  
Shoki Abe ◽  
Katsuyuki Takahashi ◽  
Seiji Mukaigawa ◽  
Koichi Takaki ◽  
Ken Yukimura

2009 ◽  
Vol 6 (S1) ◽  
pp. S392-S396 ◽  
Author(s):  
Meike Quitzau ◽  
Matthias Wolter ◽  
Holger Kersten

2021 ◽  
Vol 248 ◽  
pp. 04002
Author(s):  
Alexander Metel ◽  
Enver Mustafaev ◽  
Yury Melnik ◽  
Khaled Hamdy

We present results of theoretical and experimental study of collisional relaxation of fast electrons energy in gas. The dependence on the gas pressure p and electron energy ε of the mean pass Λ of fast electrons injected into a gas being sufficient to spend on ionization all their initial energy ε has been calculated. It was found that Λ is directly proportional to ε2 and inversely proportional to the gas pressure. To sustain glow discharge with electrostatic confinement of fast electrons, Λ should be less than the mean way to the anode of emitted by the cathode electrons.


2019 ◽  
Vol 89 (5) ◽  
pp. 781
Author(s):  
А.Г. Веселов ◽  
В.И. Елманов ◽  
О.А. Кирясова ◽  
Ю.В. Никулин

AbstractDependence of the texture tilt and excitation efficiency of shear waves on the working gas pressure in an interval of 0.14–0.74 mTorr that corresponds to the transition from collisionless to almost diffusion deposition is studied for the ZnO films with a thickness of about 0.45–1.2 μm that are synthesized in a planar dc magnetron system. It is shown that an increase in the pressure from about 0.14–0.24 to 0.74 mTorr causes a decrease in the tilt angle of the column texture from ~25°–27° to ~7° and a decrease in the efficiency of acoustic excitation. Films that are synthesized at pressures of ~0.14–0.24 mTorr close to the transition from the Townsend to glow discharge exhibit the highest excitation efficiency of shear waves. For such films, the insertion loss reaches a minimum level at thicknesses of 0.45–0.75 μm and the number of echo pulses amounts to 20–40, so that the reflected sound can be observed with a delay of up to 80 μs at a length of an acoustic guiding crystal of 10 mm.


Sign in / Sign up

Export Citation Format

Share Document