scholarly journals Synthesis and characterization of ZnTe nanoparticles

2016 ◽  
Vol 17 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Sujan Dhungana ◽  
Bhoj Raj Paudel ◽  
Surendra K. Gautam

In this work, we report the ZnTe semiconductor nanoparticles (NPs) prepared by aqueous chemical precipitation method using the tellurium precursor solution with different zinc compounds. Three batches of ZnTe NPs were synthesized to study the effect of dilution on the size and phase purity of ZnTe. The influence of source compounds and concentrations of the size and structure of NPs were studied. ZnTe NPs have great applications as field-effect transistors and photodetectors. The existing controversy regarding the crystalline structure of ZnTe NPs, whether it is cubic or hexagonal, has been resolved using X-ray Diffraction (XRD) data. The ZnTe NPs possess cubic structure, which is also confirmed by Electron Diffraction (ED) pattern. The average particle size determined from XRD data with the help of Debye-Scherrer equation is about 6 nm. The particle size can be further verified by Transmission Electron Microscopy (TEM) studies.  

NANO ◽  
2009 ◽  
Vol 04 (04) ◽  
pp. 225-232 ◽  
Author(s):  
TALAAT M. HAMMAD ◽  
JAMIL K. SALEM ◽  
ROGER G. HARRISON

Zinc oxide ( ZnO ) and yttrium-doped ZnO nanoparticles with particle size in the nanometer range have been successfully synthesized by the alkali precipitation method. The nanoparticle size and morphology have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The average particle size of Y-doped ZnO nanoparticles is about 17–29 nm. The absorption and photoluminescence (PL) spectra of the undoped and doped ZnO nanoparticles were also investigated. The optical band gap of ZnO nanoparticles can be tuned from 3.27 to 3.40 eV with increasing yittrium doping levels from 0 to 5%. The nanoparticles gave two emission peaks, one at around 376 nm and the other at 500 nm.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650247 ◽  
Author(s):  
Mahdi Ghasemifard ◽  
Misagh Ghamari ◽  
Meysam Iziy

TiO2-(Ti[Formula: see text]Si[Formula: see text]O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers–Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.


2013 ◽  
Vol 32 (5) ◽  
pp. 511-515 ◽  
Author(s):  
Xiao Guo Cao ◽  
Jia Wang ◽  
Qi Bai Wu ◽  
Hai Yan Zhang

AbstractYb:YAG transparent ceramic nano-powder was prepared by chemical co-precipitation method, with ammonium bicarbonate as the precipitant and polyethylene glycol as surfactant. The addition of polyethylene glycol can reduce the agglomeration and particle size of the prepared Yb:YAG powder. The morphology, thermal stability and phase structure of Yb:YAG nano-powder were charactered by scanning electron microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The results show that well-crystallized nano-powder was obtained by calcining the precursors at 900 °C for 3 h. The average particle size of Yb:YAG powder is about 100–200 nm. When the volume amount of polyethylene glycol is 2.0%, well-dispersed Yb:YAG powder with spherical particles of 100 nm diameter was obtained.


2012 ◽  
Vol 512-515 ◽  
pp. 170-173
Author(s):  
Xue Song Tang ◽  
Ming Li

Monodisperse Fe3O4 Superparamagnetic Nanoparticles Were Synthesized in N-Hexadecylphosphonic Acid/ Cyclohexane/ Water/ Ethanol Microemulsion under Solvothermal Conditions at 100°C. the Crystal Structure and Particle Size of Synthesized Fe3O4 Were Observed by X-Ray Diffraction (XRD) as Well as Transmission Electron Microscopy (TEM). the Results Show that the Nanoparticles Have a Cubic Crystal System and a Average Particle Size of about 10nm. each Nanoparticle Has a Single Crystal Structure. the Surface Chemistry of Synthesized Fe3O4 Nanoparticles Was Characterized by Fourier Transform Infrared Spectroscopy (FTIR), Indicating that the Nanoparticles Were Covered by a Layer of N-Hexadecylphosphonic Acid, which Made the Nanoparticles Totally Lipophilic. Magnetic Properties of the Nanoparticles Were Investigated by Using Vibrating Sample Magnetometer (VSM). the Result Reveals that the Saturation Magnetization (Ms) of the Nanoparticles Is Higher than 40 Emu/G and the Coercive Force Is near to 0. the Monodisperse Fe3O4 Nanoparticles Have Superparamagnetic Property and May Find Potential Applications in many Fields, such as Ferrofluids, Drug Loading and Release, Selective Biomolecular Separation and MRI.


1991 ◽  
Vol 6 (4) ◽  
pp. 712-718 ◽  
Author(s):  
A.G. Fox ◽  
S.C. Fuller ◽  
C.E. Whitman ◽  
V. Radmilovic

An x-ray diffractogram was generated from a powder sample of solution treated and ice brine quenched Al–14.25 at.% Li alloy. The Bragg reflections obtained were characteristic of a very-nearly fully ordered Al-rich L12 phase based on δ'Al3Li together with two very weak reflections associated with δAlLi. All the lines were significantly broadened due to particle size effects. The average particle size associated with the 100 L12 superlattice line was found to be 4.2 (3) nm and with the fundamental lines, 26.8 nm. A simple structure factor calculation indicated the volume fraction of ordered phase to be around 0.77, assuming that the lack of maximum order was due to the presence of disordered fcc AlLi solid solution. These results suggest that the microstructure of this as-quenched alloy comprises ordered regions of about 4 nm in size in a sea of disordered matrix with a very small amount of δAlLi present. This conclusion is in excellent agreement with recent small angle x-ray and transmission electron microscope studies on similar alloys and suggests that AlLi alloys which are ostensibly disordered at high temperatures go through a disorder-order transformation and then decompose into regions of order and disorder which are associated with a composition spinodal.


2012 ◽  
Vol 15 (2) ◽  
pp. 27-34
Author(s):  
Nguyet Thi Thuy Dao ◽  
Duong Phuc Nguyen ◽  
Hien Duc Than

This paper presents the synthesis and characterization of Y3Fe5O12, Gd3Fe5O12 and Dy3Fe5O12 nanoparticles by sol-gel method using initial salts solution of Y(NO3)3, Gd(NO3)3, Dy(NO3)3, Fe(NO3). The lattice constant, crystallite size and particle morphology of these ferrite garnet nanoparticles were studied by using X-ray diffraction and transmission electron microscopy (TEM). The results showed that the garnet samples prepared by this method were formed at 800oC, which is lower than the sintering temperature for ceramic bulk samples (1400oC). The particle size is in the range 25- 40 nm as observed via TEM image and the average particle size was found to be 37nm using Debye- Scherrer formula.


2012 ◽  
Vol 727-728 ◽  
pp. 904-908
Author(s):  
R. Muccillo ◽  
J.R. Carmo

SrTi0,65Fe0,35O3-δ, Ca0,5Sr0,5Ti0,65Fe0,35O3-δ, CaTi0,65Fe0,35O3-δceramic powders were synthesized by the polymeric precursor technique using CaCO3, SrCO3, C12H28O4Ti and Fe (NO3)3.9H2O. After calcination, each powder was heat treated at temperatures chosen according to data collected on thermogravimetric-differential thermal analysis experiments. The compositions were analyzed by X-ray diffraction for structural phase evaluation (either perovskite cubic or orthorhombic), laser scattering for determination of particle size distribution and average particle size, transmission electron microscopy (TEM) for observation of particle shape and average true size. Pressed powders sintered at 1250°C were analyzed by X-ray diffraction and X-ray fluorescence; their surfaces were observed by scanning probe microscopy (SPM) for topographical analysis of grains and grain boundaries. TEM results show that the powders consist of agglomerated nanoparticles. Sr-based compounds have cubic perovskite phases whereas Ca-based compounds are orthorhombic. SPM images show intergranular features which might be responsible for reported blocking of charge carriers observed in impedance spectroscopy diagrams.


2011 ◽  
Vol 694 ◽  
pp. 630-634
Author(s):  
Xiao Jie Li ◽  
Xiao Hong Wang ◽  
Hong Hao Yan ◽  
Li Xue ◽  
Ning Luo

In the present work, nano Mn and MnZn ferrite powders were prepared by detonation of emulsion explosives, XRD(X-ray diffraction),TEM(transmission electron microscope) and VSM(vibrating sample magnetometer) experiments were carried out respectively to characterize and research the prepared powders. Results indicated that the average particle size of the raw Mn and MnZn ferrite powders was around 30nm, and Zn2+ seriously destroyed and reduced the dispersity and homogeneity of the powders although they were successfully doped in nano-Mn ferrite crystals. The average particle size, the specific residual magnetization(σr) and the coercivity(Hc) of the powders were all decreased with the increasing of the hexogen(for short, RDX) content.


1993 ◽  
Vol 327 ◽  
Author(s):  
Xiang-Xin Bi ◽  
Ying Wang ◽  
W. T. Lee ◽  
Kai-An Wang ◽  
S. Bandow ◽  
...  

AbstractNanocrystalline powders of 2H-MoS2 and 2H-WS2 with average particle size 5 and 9 nm, respectively, have been produced using C02laser pyrolysis. Typical production rate for these nanoparticles is 2g/hr. Particle size, crystallite size, and the structural phase were determined using X-ray diffraction(XRD), transmission electron microscopy(TEM), and Raman scattering. Particle size effects may have been observed in the Raman-active modes (WS2 and MoS2) and in the band-edge excitons (MoS2).


Author(s):  
Farzin Mashali ◽  
Ethan M. Languri ◽  
Gholamreza Mirshekari ◽  
Jim Davidson ◽  
David Kerns

Conventional heat transfer fluids such as water, ethylene glycol, and mineral oil, that are used widely in industry suffer from low thermal conductivity. On the other hand, diamond has shown exceptional thermal properties with a thermal conductivity higher than five times of copper and about zero electrical conductivity. To investigate the effectiveness of nanodiamond particles in traditional heat transfer fluids, we study deaggregated ultra-dispersed diamonds (UDD) using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Furthermore, nanodiamond nanofluids were prepared at different concentrations in deionized (DI) water as the base fluid. Particle size distribution was investigated using TEM and the average particle size have been reported around 6 nm. The thermal conductivity of nanofluids was measured at different concentrations and temperatures. The results indicate up to 15% enhancement in thermal conductivity compared with the base fluid and thermal conductivity increases with temperature and particle loading. The viscosity raise in the samples have been negligible.


Sign in / Sign up

Export Citation Format

Share Document