scholarly journals POINTS CLOUD PRE-PROCESSING AND SAMPLING BASED ON DISTANCE ALGORITHM TECHNIQUE

2021 ◽  
Vol 25 (02) ◽  
pp. 1-8
Author(s):  
Ali M. Al-Bdairy ◽  
◽  
Ahmed A. A. Al-Duroobi ◽  
Maan A. Tawfiq ◽  
◽  
...  

Although the rapid development of reverse engineering techniques such as a modern 3D laser scanners, but can’t use this techniques immediately to generate a perfect surface model for the scanned parts, due to the huge data, the noisy data which associated to the scanning process, and the accuracy limitation of some scanning devices, so, the present paper present a points cloud pre-processing and sampling algorithms have been proposed based on distance calculations and statistical considerations to simplify the row points cloud which obtained using MATTER and FORM 3D laser scanner as a manner to obtain the required geometrical features and mathematical representation from the row points cloud of the scanned object through detection, isolating, and deleting the noised points. A MATLAB program has been constructed for executing the proposed algorithms implemented using a suggested case study with non-uniform shape. The results were proved the validity of the introduced distance algorithms for pre-processing and sampling process where the proficiency percent for pre-processing was (18.65%) with a single attempt, and the counted deviation value rang with the sampling process was (0.0002-0.3497mm).

2020 ◽  
Vol 16 (3) ◽  
pp. 34-42
Author(s):  
Ali M. Albdairy ◽  
Ahmed A. A. Al-Duroobi ◽  
Maan A. Tawfiq

Abstract Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built to perform the proposed algorithm which implemented using a suggested case studies with cylinder and dome shape. The resulted point cloud from application the proposed algorithm and result of surface fitting for the case studies has been proved the proficiency of the proposed chord angle algorithm in pre-processing of data points and clean the point cloud, where the percent of data which was ignored as noisy data points according to proposed chord angle algorithm was arrived to (81.52%) and (75.01%)of total number of data points in point cloud for first and second case study respectively.


2006 ◽  
Vol 129 (3) ◽  
pp. 623-635 ◽  
Author(s):  
Yunbao Huang ◽  
Xiaoping Qian

The recent advancement of 3D non-contact laser scanners enables fast measurement of parts by generating a huge amount of coordinate data for a large surface area in a short time. In contrast, traditional tactile probes in the coordinate measurement machines can generate more accurate coordinate data points at a much slower pace. Therefore, the combination of laser scanners and touch probes can potentially lead to more accurate, faster, and denser measurements. In this paper, we develop a dynamic sensing-and-modeling approach for integrating a tactile point sensor and an area laser scanner to improve the measurement speed and quality. A part is first laser scanned to capture its overall shape. It is then probed via a tactile sensor where the probing positions are dynamically determined to reduce the measurement uncertainty based on a novel next-best-point formulation. Technically, we use the Kalman filter to fuse laser-scanned point cloud and tactile points and to incrementally update the surface model based on the dynamically probed points. We solve the next-best-point problem by transforming the B-spline surface’s uncertainty distribution into a higher dimensional uncertainty surface so that the convex hull property of the B-spline surface can be utilized to dramatically reduce the search speed and to guarantee the optimality of the resulting point. Three examples in this paper demonstrate that the dynamic sensing-and-modeling effectively integrates the area laser scanner and the point touch probe and leads to a significant amount of measurement time saving (at least several times faster in all three cases). This dynamic approach’s further benefits include reducing surface uncertainty due to the maximum uncertainty control through the next-best-point sensing and improving surface accuracy in surface reconstruction through the use of Kalman filter to account various sensor noise.


Author(s):  
Yunbao Huang ◽  
Xiaoping Qian

The recent advancement of 3D non-contact laser scanners enables fast measurement of parts by generating huge amount of coordinate data for a large surface area in a short time. In contrast, traditional tactile probes in the coordinate measurement machines (CMM) can generate more accurate coordinate data points in a much slower pace. Therefore the combination of laser scanners and touch probes can potentially lead to more accurate, faster and denser measurement. In this paper, we develop a dynamic sensing-and-modeling approach for integrating a tactile point sensor and an area laser scanner to improve the measurement speed and quality. The part is first laser scanned to capture the overall shape of the object. It is then probed via a tactile sensor at positions are dynamically determined to reduce the measurement uncertainty based on a novel next-best-point formulation. Technically, we use the Kalman filter to fuse laser scanned point cloud and tactile points and to incrementally update the surface model based on the dynamically probed points. We solve the next-best-point problem by transforming the B-spline surface’s uncertainty distribution into a higher dimensional uncertainty surface so that the convex hull property of the B-spline surface can be utilized to dramatically reduce the search speed and to guarantee the optimality of the resulting point. Three examples in this paper demonstrate that the dynamic sensing-and-modeling effectively integrates the area laser scanner and the point touch probe and leads to significant amount of measurement time saving (at least several times in all three cases). This dynamic approach’s further benefits include reduced surface uncertainty due to the maximum uncertainty control through the next-best-point sensing and improved surface accuracy in surface reconstruction through the use of Kalman filter to account various sensor noise.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


2020 ◽  
Vol 17 (12) ◽  
pp. 3012-3023
Author(s):  
Carlos Magno Moreira de Oliveira ◽  
Márcio Rocha Francelino ◽  
Bruno Araujo Furtado de Mendonça ◽  
Isabela Queiroz Ramos
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2263
Author(s):  
Haileleol Tibebu ◽  
Jamie Roche ◽  
Varuna De Silva ◽  
Ahmet Kondoz

Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is yet to be obtained, as most modern environments contain glass, which is invisible to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is proposed. This new approach is based on the variation of range measurements between neighbouring point clouds, using a two-step filter. The first filter examines the change in the standard deviation of neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring pules to refine the results from the first filter and estimate the glass profile width before updating the cartesian coordinate and range measurement by the instrument. Test results demonstrate the detection and localisation of glass and the elimination of errors caused by glass in occupancy grid maps. This novel method detects frameless glass from a long range and does not depend on intensity peak with an accuracy of 96.2%.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2935
Author(s):  
Giovana Maranhão Bettiol ◽  
Manuel Eduardo Ferreira ◽  
Luiz Pacheco Motta ◽  
Édipo Henrique Cremon ◽  
Edson Eyji Sano

The Brazilian Cerrado (tropical savanna) is the second largest biome in South America and the main region in the country for agricultural production. Altitude is crucial information for decision-makers and planners since it is directly related to temperature that conditions, for example, the climatic risk of rainfed crop plantations. This study analyzes the conformity of two freely available digital elevation models (DEMs), the NASADEM Merged Digital Elevation Model Global 1 arc second (NASADEM_HGT) version 1 and the Advanced Land Observing Satellite Global Digital Surface Model (ALOS AW3D30), version 3.1, with the altitudes provided by 1695 reference stations of the Brazilian Geodetic System. Both models were evaluated based on the parameters recommended in the Brazilian Cartographic Accuracy Standard for Digital Cartographic Products (PEC-PCD), which defines error tolerances according to eight different scales (from 1:1000 to 1:250,000) and classes A (most strict tolerance, for example, 0.17 m for 1:1000 scale), B, C, and D (least strict tolerance, for example, 50 m for 1:250,000 scale). Considering the class A, the NASADEM_HGT meets 1:250,000 and lower scales, while AW3D30 meets 1:100,000 and lower scales; for class B, NASADEM_HGT meets 1:100,000 scale and AW3D30 meets 1:50,000. AW3D30 presented lower values of root mean square error, standard deviation, and bias, indicating that it presents higher accuracy in relation to the NASADEM_HGT. Within eight of Cerrado’s municipalities with the highest grain production, the differences between average altitudes, measured by the Cohen’s effect size, were statistically insignificant. The results obtained by the PEC-PCD for the Cerrado biome indicate that both models can be employed in different DEM-dependent applications over this biome.


2019 ◽  
Vol 19 (10) ◽  
pp. 2079-2095 ◽  
Author(s):  
Michele Perrotti ◽  
Piernicola Lollino ◽  
Nunzio Luciano Fazio ◽  
Mario Parise

Abstract. The stability of man-made underground cavities in soft rocks interacting with overlying structures and infrastructures represents a challenging problem to be faced. Based upon the results of a large number of parametric two-dimensional (2-D) finite-element analyses of ideal cases of underground cavities, accounting for the variability both cave geometrical features and rock mechanical properties, specific charts have been recently proposed in the literature to assess at a preliminary stage the stability of the cavities. The purpose of the present paper is to validate the efficacy of the stability charts through the application to several case studies of underground cavities, considering both quarries collapsed in the past and quarries still stable. The stability graphs proposed by Perrotti et al. (2018) can be useful to evaluate, in a preliminary way, a safety margin for cavities that have not reached failure and to detect indications of predisposition to local or general instability phenomena. Alternatively, for sinkholes that already occurred, the graphs may be useful in identifying the conditions that led to the collapse, highlighting the importance of some structural elements (as pillars and internal walls) on the overall stability of the quarry system.


Sign in / Sign up

Export Citation Format

Share Document