scholarly journals FLEXURAL BEHAVIOR OF REINFORCED LIGHTWEIGHT CONCRETE BEAMS MADE WITH ATTAPULGITE AND ALUMINUM WASTE

2021 ◽  
Vol 25 (02) ◽  
pp. 24-35
Author(s):  
Zahraa A. Mirza ◽  
◽  
Nibras N. Khalid ◽  

Lightweight concrete reduces the total dead load of structural elements and seismic loads significantly. This paper presents the production Attapulgite Lightweight aggregate concrete (ALWAC) and its effect on the flexural behavior of reinforced concrete beams. Attapulgite was treated with sodium hypochlorite of 6% concentration for 24 hours. The variable considered was the aluminum waste (AW), used as a fiber, of fraction (0, 0.5 and 1%) by concrete volume. Behavior was investigated in terms of cracking and ultimate load, load-deflection relationship, failure mode, crack patterns and flexural ductility. The mechanical properties of the ALWAC were studied. It was observed that, Attapulgite improves the mechanical properties of concrete when comparing the experimental value with theoretical ones for the reference mixture. AW has a disparate effect on the mechanical properties of ALWAC. The increase in the proportions of AW showed an increase in the cracking load and decrease in the ultimate load by 37.14% and 22.45 %, respectively, at AW of 1%. Experimental value of ultimate load in all beams was higher than the theoretical value (ACI simplified method). AW increases the deflection at the same magnitude of applied load, and reduces the number and propagation of the flexural cracks in beams. All beams exhibited a typical tension failure mode and failed in ductile manner.

2019 ◽  
Vol 27 (2) ◽  
pp. 64-73
Author(s):  
Sajjad abdulameer Badar ◽  
Laith Shakir Rasheed ◽  
Shakir Ahmed Salih

This paper aims to investigate the structural behavior of reinforced lightweight concrete beams. Attapulgite aggregate and crushed clay brick aggregate were used as coarse lightweight aggregate to produce structural lightweight aggregate concrete with 25 Mpa and 43.6 Mpa cube compressive strength and 1805 Kg/m3 and 1977 Kg/m3 oven dry density respectively. The result of reinforced lightweight concrete beams compared with reinforced normal weight concrete beams, which have 50.5 Mpa cylinder compressive strength and 2317 Kg/m3 oven dry density. For each type of concrete two reinforced concrete beams with (1200 mm length × 180 mm height × 140 mm width), one of them tested under symmetrical two-points load STPL (a/d = 2.2) and another one tested under one-point load OPL (a/d=3.3) at 28 days. The experimental program shows that a structural lightweight aggregate concrete can be produced by using Attapulgite aggregate with 25 MPa cube compressive strength and 1805 Kg/m3 oven dry density and by using crushed clay brick aggregate with 43.6 MPa cube compressive strength and 1977 Kg/m3 oven dry density. The weight of Attapulgite aggregate concrete and crushed clay bricks aggregate concrete beam specimens were lower than normal weight aggregate concrete beams by about 20.56% and 13.65% respectively at 28 days.  As for the ultimate load capacities of beam specimens, the ultimate load of Attapulgite aggregate concrete beams tested under STPL were lower than that of crushed clay bricks aggregate concrete beams and normal weight aggregate concrete beams by about 4.85% and 5% respectively. While the ultimate load capacities of reinforced Attapulgite concrete beams tested under OPL were lower than that of reinforced crushed clay bricks aggregate concrete beams and reinforced normal weight aggregate concrete beams by about 10.3% and 10.5% respectively. Finally, Attapulgite aggregate concrete and crushed clay bricks aggregate concrete showed ductility and toughness less than that of Normal weight aggregate concrete.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 316 ◽  
Author(s):  
Adel A. Al-Azzawi ◽  
Dalia Shakir ◽  
Noora Saad

In Iraq, the use of rubber waste material in concrete is an interesting topic due to its availability in large volumes. Researches of applications of rubber waste in concrete have been increased since 2003. Many studies carried out to investigate the performance of concrete using different ratios of rubber as a replacement to fine or coarse aggregate. In this research, rubber wastes from scrapped tires have been added as fiber to concrete mix with presence of 0.5% superplasticizer. The flexural behavior of concrete beams, mechanical properties of concrete and workability of concrete mixes have been studied. Rubber fibers ranging from (2-4) mm were added in percentages of 0.5% and 1%) of the cement weight. The results have demonstrated that the addition of rubber material as fibers in natural aggregate concrete enhances its ductility, compressive strength and tensile strength compared to the normal concrete. The effect of rubber fiber content is found to be significant on the behavior of tested beams. If the fiber content increased from 0 to 0.5% the cracking load increased by 60 % and ultimate load increased by 21%. For rubberized concrete, if the fiber content increased from 0.5 to 1.0%, the cracking load decreased 7% and ultimate load increased by 4%.   


2020 ◽  
Vol 5 (6) ◽  
pp. 702-707
Author(s):  
Fariborz M. Tehrani ◽  
Nazmieh A. Masswadi ◽  
Nathan M. Miller ◽  
Arezoo Sadrinezhad

This paper presents the results of an experimental study to investigate dynamic properties of polypropylene fiber-reinforced concrete beams with lightweight expanded shale (ES) and tire-derived aggregates (TDA). The mixture design followed past experiences in combining ES and TDA to enhance toughness and energy absorption in flexural behavior. The new mixture also contained 2% fiber by volume to improve such properties further. Experiments included compressive testing on cylindrical specimens as well as flexural testing on rectangular specimens to verify mechanical properties of fiber-reinforced tire-derived lightweight aggregate concrete (FRTDLWAC) subject to static loading. The results of these experiments confirmed reduction of mechanical strength due to addition of TDA and improvements in flexural strength due to fiber reinforcement. The dynamic testing included non-destructive impact loads applied to flexural specimens using a standard Schmidt hammer. A high-speed camera recorded the response of the system at 200 frames per second to allow detailed observations and measurements. Interpretation of energy-based dynamic results revealed that TDA enhances energy absorption through damping in flexural behavior. Results also indicated that fiber reinforcement reduces the amount of absorbed dynamic energy, even though; it enhances the absorbed strain energy due to crack bridging effect.


2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


2011 ◽  
Vol 117-119 ◽  
pp. 1302-1305
Author(s):  
Ning Liao ◽  
Hong Zhi Cui

This research is one part of preliminary work for integrated structural-functional energy storage concrete by using porous artificial lightweight aggregate and phase change material. Lightweight aggregate concrete (LWAC) has been applied more and more extensively in recent years, but high water absorption of porous artificial lightweight aggregate (LWA) is inconvenient for LWAC production. In order to improve LWA application, in this paper, two aspects of lightweight aggregate (LWA) study have been carried out, namely, a) LWA surface modification. The effects of different concentration of surface modifier on water absorption of modified LWA were studied. b) Mechanical properties of lightweight aggregate concrete made of the unmodified and modified LWAs Through comparing the water absorption of unmodified and modified LWAs, it can be known that the surface modification for LWA can reduce the water absorption obviously. The three kinds of lightweight concrete possess nearly same strength at 7-day and, at 28-day, the strength of LWAC using 1:20 modified LWA is highest and that of LWAC using 1:5 modified LWA is lowest. 28 days compressive strength of LWAC using 1:20 modified LWA could be up to 46.1MPa.


2020 ◽  
Vol 26 (2) ◽  
pp. 111-128
Author(s):  
Tamara M. Hasan ◽  
Ahmed S. Ali

The massive growth of the automotive industry and the development of vehicles use lead to produce a huge amount of waste tire rubber. Rubber tires are non-biodegradable, resulting in environmental problems such as fire risks. In this search, the flexural behavior of steel fiber reinforced self-compacting concrete (SFRSCC) beams containing different percentages and sizes of waste tire rubbers were studied and compared them with the flexural behavior of SCC and SFRSCC. Micro steel fiber (straight type) with aspect ratio 65 was used in mixes. The replacement of coarse and fine aggregate was 20% and 10% with chip and crumb rubber. Also, the replacement of limestone dust and silica fume was 50%, 25%, and 12% with ground rubber and very fine rubber, respectively. Twelve beams with small-scale (L=1100mm, h = 150mm, b =100mm) were tested under two points loading (monotonic loading). Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width were investigated. Two tested reinforced concrete beams from experimental work were selected as a case study to compare with the results from ABAQUS program (monotonic loading). These two reinforced concrete beams were simulated as a parametric study under repeated loading using this finite element program. The results showed that the flexural behavior of SFRSCC beams containing rubber was acceptable when compared with flexural behavior of SCC and SFRSCC beams (depended on load carrying capacity). Cracks width was decreased with the addition of steel fibers and waste tires rubber.  An acceptable agreement can be shown between the results of numerical analysis and the results obtained from experimental test (monotonic loading). Insignificant ultimate load differences between the results of monotonic loading and repeated loading                                                                                                                                                                                           


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3479 ◽  
Author(s):  
Luís Bernardo ◽  
Miguel Nepomuceno ◽  
Hugo Pinto

This article presents an experimental study on the evolution of the neutral axis depth at failure in the critical section with the flexural ductility and plastic rotation capacity of reinforced concrete (RC) lightweight-aggregate concrete (LWAC) beams. For this, the results of a previous experimental program involving RC LWAC beams tested in flexure until failure are used. The variable studies were the concrete compressive strength (between 22.0 and 60.4 MPa and dry density between 1651 and 1953 kg/m3) and the longitudinal tensile reinforcement ratio (between 0.13% and 2.69%). The flexural ductility and the plastic rotation capacity of the RC LWAC beams are characterized by a ductility index and a plastic trend parameter, respectively. The influence of the variable studies, as well as the relation of the flexural ductility and plastic rotation capacity with the values for the neutral axis depth at failure are analyzed and discussed. Some conclusions are drawn which can be useful for the design of RC LWAC beams for flexure. In particular, it is shown that the practical rule of limiting the neutral axis depth at failure to ensure ductile behavior, as used in normal-weight aggregate concrete beams, is also valid for RC LWAC beams.


Author(s):  
Yingguang Fang ◽  
Yafei Xu ◽  
Renguo Gu

AbstractRecent years have witnessed that the prefabricated concrete structure is in the widespread use of building structures. This structure, however, still has some weaknesses, such as excessive weight of components, high requirements for construction equipment, difficult alignment of nodes, and poor installation accuracy. In order to handle the problems mentioned above, the prefabricated component made of lightweight concrete is adopted. At the same time, this prefabricated component is beneficial to reducing the load of the building structure itself and improving the safety and economy of the building structure. Nevertheless, it is rarely found that the researches and applications of lightweight concrete for stressed members are conducted. In this context, this paper replaces ordinary coarse aggregate with lightweight ceramsite or foam based on the C60 concrete mix ratio so as to obtain a mix ratio of C40 lightweight concrete that meets the engineering standards. Besides, ceramsite concrete beams and foamed concrete beams are fabricated. Moreover, through three-point bending tests, this paper further explores the mechanical properties of lightweight concrete beams and plain concrete beams during normal use conditions. As demonstrated in the results, the mechanical properties of the foamed concrete beam are similar to those of the plain concrete beam. Compared to plain concrete beams, the density of foamed concrete beams was lower by 23.4%; moreover, the ductility and toughness of foamed concrete were higher by 13% and 3%, respectively. However, in comparison with the plain concrete beam, the mechanical properties of the ceramsite concrete beam have some differences, with relatively large dispersion and obvious brittle failure characteristics. Moreover, in consideration of the nonlinear deformation characteristics of reinforced concrete beams, the theoretical calculation value of beam deflection was given in this paper based on the assumption of flat section and the principle of virtual work. The theoretically calculated deflection values of ordinary concrete beams and foamed concrete beams are in good agreement with the experimental values under normal use conditions, verifying the rationality and effectiveness of the calculation method. The research results of this paper can be taken as a reference for similar engineering designs.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 948
Author(s):  
Mugahed Amran ◽  
Yeong Huei Lee ◽  
Nikolai Vatin ◽  
Roman Fediuk ◽  
Shek Poi-Ngian ◽  
...  

Foam concrete (FC) serves as an efficient construction material that combines well thermal insulation and structural properties. The studies of material characteristics, including the mechanical, physical, rheological, and functional properties of lightweight concrete, have been conducted rigorously. However, a lack of knowledge on the design efficiency of reinforced FC (RFC) was found in current research trends, compared to reinforced lightweight aggregate concrete. Therefore, this paper presents a review of the performance and adaption in structures for RFC. According to the code specifications, the feasibility investigation was preliminarily determined in structural use through the summary for the mechanical properties of FC of FC’s mechanical properties. For reinforced concrete design, a direct method of reduction factors is introduced to design lightweight aggregate concrete, which is also suggested to be adapted into a lightweight FC design. It was found that flexural shear behavior is a more complex theoretical analysis than flexure. However, a reduction factor of 0.75 was recommended for shear, torsion, and compression; meanwhile, 0.6 for flexural members. Serviceability limit states design should be applied, as the crack was found predominant in RFC design. The deflection controls were recommended as 0.7 by previous research. Research on RFC’s compression members, such as a column or load load-bearing wall, were rarely found. Thus, further study for validating a safe design of RFC applications in construction industries today is highly imperative.


Sign in / Sign up

Export Citation Format

Share Document