plastic rotation capacity
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 15 (1) ◽  
pp. 176-188
Author(s):  
Rosario Montuori ◽  
Elide Nastri ◽  
Vincenzo Piluso ◽  
Alessandro Pisapia

Background: In this paper, the influence of the Ramberg-Osgood exponent on the ultimate behaviour of the H-shaped (or I-shaped) aluminium beams subjected to non-uniform bending moment is investigated. Methods: In particular, the results of a wide parametric analysis recently carried out by the authors are herein exploited to point out the influence of the material properties. The flange slenderness, the flange-to-web slenderness ratio, and the non-dimensional shear length, accounting for the moment gradient, are the main non-dimensional parameters governing the ultimate resistance and the rotation capacity of H-shaped aluminium beams. Results: The influence of these parameters was investigated considering four different materials covering both low yielding-high hardening alloys and high yielding-low hardening alloys, which are characterised by significant differences in the values of the Ramberg-Osgood exponent of the stress-strain constitutive law of the material. Conclusion: Finally, empirical formulations for predicting the non-dimensional ultimate flexural strength and the plastic rotation capacity of H-section aluminium beams under moment gradient have been provided as a function of the Ramberg-Osgood exponent and all the above non-dimensional parameters.


2021 ◽  
Vol 15 (1) ◽  
pp. 152-163
Author(s):  
Massimiliano Ferraioli

Background: The steel beam-to-column connections are vulnerable structural elements when a building loses one or more of its vertical load-carrying components due to abnormal or accidental loading conditions. After a column is destroyed by abnormal loads, the tensile axial force of the beam gradually increased, while the bending moment decreased, and the load-resistance mechanism shifts from a flexural mechanism to a catenary mechanism, with the axial force becoming the prevailing factor. Aims: This paper investigates the progressive collapse performance of steel beam-to-column connections. While undergoing large deformation, the beam-to-column connections are subjected to moment, shear, and tension in conjunction with high ductility demand. Their behavior under monotonic loading depends on the moment-axial tension interaction and greatly affects the progressive collapse resistance of the structure. This paper presents a critical review of experimental tests of different types of steel beam-column joints (flexible, rigid, and semi-rigid) under a central-column-removal scenario. Methods: The experimental results, including load-deformation relationships, failure modes, and catenary effects, are described in detail. The findings are used to evaluate the rotation capacity of different types of steel beam-to-column connections. The results are compared to the acceptance criteria specified by the main progressive collapse guidelines for several beam-to-column connection categories. Results: In simple (flexible) joints, the stiffness and strength at higher drift angles essentially depend on the tensile capacity of the connection that prevents, in some cases, the full development of the catenary mechanism. The connection depth alone does not seem to be an effective parameter to predict the rotational capacity of beam-to-column connections, since different connections with similar values of the connection depth result in very different values of the maximum rotation capacity. In fully rigid and semi-rigid connections, after the column removal, the flexural resistance controls the behavior at the preliminary phase, and the tensile force is almost zero. With increased downward displacement, the axial tensile force also increases, developing a catenary mechanism. Although the stiffness of rigid and semi-rigid connections is higher than flexible connections, both categories result in similar rotation capacity. Conclusion: In all the simple connections herein considered, the plastic rotation capacity obtained by tests was found much higher than the code recommended values that are probably too conservative. On the contrary, for one rigid and two semi-rigid connections, the values of the plastic rotation capacity obtained by tests are lower than the corresponding recommended values. Thus, the suggested acceptance criteria proved to be out of the conservative side.


2021 ◽  
Vol 147 (7) ◽  
Author(s):  
Ryota Matsui ◽  
Koichi Koizumi ◽  
Pao-Chun Lin ◽  
Masanobu Iwanaga ◽  
An-Chien Wu ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 1-9
Author(s):  
Seongyeon Seo

In terms of the moment frame system of steel structures, early brittle fractures developed in the H-shaped beam-to-column connection during the Northridge and Kobe earthquakes, thereby indicating insufficient seismic performance of these components. In this study, experiments were conducted on two-side shear connections of web and rib plate reinforcements of the flanges on an H-shaped beam-to-column connection. According to the test results, the H-shaped beam-to-column connections with two-side shear connections of beam web and rib plate reinforcements of the flanges were superior to the existing connections in terms of initial stiffness, energy dissipation capacity, and plastic rotational capacity. The test values exceeded 4.2%, 0.027 rad, and 125% in terms of story drift ratio, total plastic rotation capacity, and full plastic moment of the beam, respectively. Accordingly, the proposed H-shaped beam-to-column connection showed better performance than that of the intermediate moment frame regarding seismic design.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3479 ◽  
Author(s):  
Luís Bernardo ◽  
Miguel Nepomuceno ◽  
Hugo Pinto

This article presents an experimental study on the evolution of the neutral axis depth at failure in the critical section with the flexural ductility and plastic rotation capacity of reinforced concrete (RC) lightweight-aggregate concrete (LWAC) beams. For this, the results of a previous experimental program involving RC LWAC beams tested in flexure until failure are used. The variable studies were the concrete compressive strength (between 22.0 and 60.4 MPa and dry density between 1651 and 1953 kg/m3) and the longitudinal tensile reinforcement ratio (between 0.13% and 2.69%). The flexural ductility and the plastic rotation capacity of the RC LWAC beams are characterized by a ductility index and a plastic trend parameter, respectively. The influence of the variable studies, as well as the relation of the flexural ductility and plastic rotation capacity with the values for the neutral axis depth at failure are analyzed and discussed. Some conclusions are drawn which can be useful for the design of RC LWAC beams for flexure. In particular, it is shown that the practical rule of limiting the neutral axis depth at failure to ensure ductile behavior, as used in normal-weight aggregate concrete beams, is also valid for RC LWAC beams.


2017 ◽  
Vol 25 (2) ◽  
pp. 173-184
Author(s):  
Krzysztof Ostrowski ◽  
Aleksander Kozłowski

Abstract One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley’s PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt “w” (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.


2014 ◽  
Vol 1025-1026 ◽  
pp. 902-905
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Yang Yang ◽  
Keun Yeong Oh ◽  
Sung Bin Hong

The main objectives of this paper was to investigate the cyclic performance of splice connection in weak-axis column-tree connections with the formation of plastic hinge assumed at splice connection and provide some design recommendations. By reducing the cross-sectional area of the splice plates, the splice connection in this test are designed as a weaken component to utilize the ductility capacity and energy dissipation. The results showed that it could develop the plastic rotation capacity in the beam splice connection and portion in the link beam but not increase the energy dissipation capacity during the same story drift ratio.


2014 ◽  
Vol 578-579 ◽  
pp. 188-191
Author(s):  
Chun Xiao Zhao ◽  
Hong Yu Zhou ◽  
Hua Ge Jiang ◽  
Yi Bo Chen

Studies on size effect of plastic hinge of RC members are still rare at the present stage. This paper explores the development and failure characteristics of plastic hinge of pure bending section and analysis relevant mechanical parameters of size effect. Measured tests data show that plastic hinge equivalent length is close to the depth of beam which has no obvious size effect. However, plastic rotation capacity of plastic hinge has a significant size effect. Plastic rotation capacity decreases with section size increases if evaluate it based on ultimate load state, and increases with section size increases if evaluate it based on measured max load state.


Sign in / Sign up

Export Citation Format

Share Document