scholarly journals USING PARTICLE SWARM OPTIMAZATION TO FIND OPTIMAL SIZING OF PV-BS AND DIESEL GENERATOR

2021 ◽  
Vol 25 (3) ◽  
pp. 51-59
Author(s):  
Abbas Q. Mohammed ◽  
◽  
Kassim A. Al-Anbarri ◽  
Rafid M. Hannun ◽  
◽  
...  

This paper explores the sizing optimization of stand -alone hybrid energy system (HES) in southern Iraq (Thi Qar province) for supply stand-alone households by the electricity. HES consist of three components (solar cell (PV), diesel generator (DG) and battery storage (BS)). Particle swarm optimization (PSO) used in this study for find optimal sizing of the HES to minimizing multi-objective, first objective is to minimizing the total system cost (TSC) that lead to minimizing cost of energy (COE). Second objective is to minimizing total emission CO2 (TECO2). The constraint of the optimization is the reliability (100 %) mean continuous provide the load demand by the electricity. The results of the optimization show the ability the algorithm to minimizing the multi-objective with continuous supply the load by the electricity through life cycle of the project (25) years.

2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 425 ◽  
Author(s):  
Yao Wang ◽  
Yan Lu ◽  
Liwei Ju ◽  
Ting Wang ◽  
Qingkun Tan ◽  
...  

In order to meet the user’s electricity demand and make full use of distributed energy, a hybrid energy system (HES) was proposed and designed, including wind turbines (WTs), photovoltaic (PV) power generation, conventional gas turbines (CGTs), incentive-based demand response (IBDR), combined heat and power (CHP) and regenerative electric (RE) boilers. Then, the collaborative operation problem of HES is discussed. First, the paper describes the HES’ basic structure and presents the output model of power sources and heating sources. Next, the maximum operating income and minimum load fluctuation are taken as the objective function, and a multi-objective model of HES scheduling is proposed. Then an algorithm for solving the model is proposed that comprises two steps: processing the objective functions and constraints into linear equations and determining the optimal weight of the objective functions. The selected simulation system is a microgrid located on an eastern island of China to comparatively analyze the influence of RE-heating storage (RE-HS) and price-based demand response (PBDR) on HES operation in relation to four cases. By analyzing the results, the following three conclusions are drawn: (1) HES can comprehensively utilize a variety of distributed energy sources to meet load demand. In particular, RE technology can convert the abandoned energy of WT and PV into heat during the valley load time, to meet the load demand combined with CHP; (2) The proposed multi-objective scheduling model of HES operation not only considers the maximum operating income but also considers the minimum load fluctuation, thus achieving the optimal balancing operation; (3) RE-HS and PBDR have a synergistic optimization effect, and when RE-HS and PBDR are both applied, an HES can achieve optimal operation results. Overall, the proposed decision method is highly effective and applicable, and decision makers could utilize this method to design an optimal HES operation strategy according to their own actual conditions.


2020 ◽  
Vol 12 (8) ◽  
pp. 3341 ◽  
Author(s):  
Hegazy Rezk ◽  
N. Kanagaraj ◽  
Mujahed Al-Dhaifallah

This research paper aimed to design and present a sensitivity analysis of a hybrid photovoltaic-fuel-cell-battery (PV/FC/B) system to supply a small community for the recently planned grand city NEOM in Saudi Arabia. The location of the city of NEOM is characterized by a high average level of solar irradiance. The average daily horizontal solar radiation is around 5.85 kWh/m2. A detailed feasibility and techno-economic evaluation of a PV/FC/B hybrid energy system were done to supply a daily load demand of 500 kWh (peak-35 kW). The PV array was the main source to meet the load demand. During the surplus periods, the battery was charged using extra energy and powered the electrolyzer for hydrogen production. The produced hydrogen was stored for later use. During the deficit periods, the FC and/or battery supported the PV array to meet the load demand. Two benchmarks, the cost of energy (COE) and net present cost (NPC), were used to identify the best size of the PV/FC/B system. Variation of the tilt angle of the PV array and the derating factor were considered to determine the effect of the performance of the PV/FC/B system’s COE and NPC. The main findings confirmed that a 200 kW PV array, 40 kW FC, 96 batteries, 50 kW converter, 110 kW electrolyzer, and 50 kg hydrogen tank was the best option to supply the load demand. The values of total NPC and COE were $500,823 and $0.126/kWh. The annual excess energy was very sensitive to the declination angle of the PV array. The minimum annual excess energy was achieved at an angle of 30 degrees. It decreased by 75.7% and by 60.6% compared to a horizontal surface and 50 degrees of declination, respectively. To prove the viability of the proposed system, a comparison with grid extension along with a diesel generation system was carried out.


2015 ◽  
Vol 64 (1) ◽  
pp. 139-155 ◽  
Author(s):  
T. Bogaraj ◽  
J. Kanakaraj ◽  
K. Mohan Kumar

Abstract This paper presents the optimal sizing of PV/Wind/Fuel Cell/Battery Hybrid Energy System for energizing a Small Scale Industrial Application or a village domestic load of 200 kW. HOMER software is used for simulation of the complete system. The solar radiation data and wind speed data used in this paper are for the place of Coimbatore, Tamil Nadu, India which is located 11.0183° N longitude and 76.9725° E latitude. The optimized sizes of components of Hybrid Power System (HPS) are found based on Levelised Cost of Energy (LCE) and total Net Present Cost (NPC). The results are presented and compared for five different combinations of HPS components. Suggestions are also presented to choose the low cost system which produces energy at low LCE.


2021 ◽  
Vol 14 (1) ◽  
pp. 57-66
Author(s):  
Saadoon Abdul Hafedh

Hybrid energy systems is an energy system which employs the combination of various renewable energy sources (solar, wind, biomass, hydro, and hydrogen fuel) with conventional energy sources to supply electricity. These systems have become reliable and most cost-effective as compare to single-source energy system for rural electrification. The objective of the present study is to address the demand for electrification of remote rural village in eastern Iraq. The methodology is carried out for optimization of hybrid energy system comprising (Photovoltaic, battery, diesel generator) by using HOMER to minimize the cost of energy and the greenhouse gas emissions. For different configuration of energy sources, the capital cost, net present cost and cost of energy is determined for the optimized hybrid energy system on the basis of the electric consumption demand for the selected site. The simulation results show that the most techno-economic analysis for hybrid energy system can feed the  rural village in eastern Iraq to meet a daily load of 30 kW has consisted of 6 kW photovoltaic array, 7 kW power inverter, 20 units of battery (305 Ah and 6V) and 35 kW wind turbines. The optimized energy system has a cost of energy about $ 0.117/kWh and total net present cost  by about $14800. The environmental assessment of the hybrid system shows that the greenhouse gases emissions will reduce about 25ton CO2/year (16968 kg/year) in the local atmosphere.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Sign in / Sign up

Export Citation Format

Share Document