scholarly journals Self-assembly of biomineralization protein Mms6 and its function as a ferric iron reductase that associates with lipid membranes

2015 ◽  
Author(s):  
Shuren Feng
Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


Author(s):  
M. Austin Creasy ◽  
Donald J. Leo

Biological systems demonstrate autonomous healing of damage and are an inspiration for developing self-healing materials. Our recent experimental study has demonstrated that a bilayer lipid membrane (BLM), also called a black lipid membrane, has the ability to self-heal after mechanical failure. These molecules have a unique property that they spontaneously self assembly into organized structures in an aqueous medium. The BLM forms an impervious barrier to ions and fluid between two volumes and strength of the barrier is dependent on the pressure and electrical field applied to the membrane. A BLM formed over an aperture on a silicon substrate is shown to self-heal for 5 pressurization failure cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65684-65689 ◽  
Author(s):  
Fan Xu ◽  
Meimei Bao ◽  
Longfei Rui ◽  
Jiaojiao Liu ◽  
Jingliang Li ◽  
...  

A self-assembled lipid membrane provides a smooth, hydrophilic and biocompatible surface coating film for materials.


1994 ◽  
Vol 351 ◽  
Author(s):  
Alok Singh ◽  
Michael Markowitz ◽  
Gan Moog Chow

ABSTRACTMolecular Self-assembly of amphiphilic phospholipid molecules (containing a hydrophobic acyl chain and a hydrophilic phosphate group attached to glycerol backbone) and other amphiphiles offers a versatile approach to form ordered structures. Stabilization of lipid microstructures by polymerization renders them useful for practical applications in the areas ranging from controlled release technology to template mediated synthesis of metals. Our efforts are focussed on the development and use of polymerizable diacetylenic phospholipids and their microstructures as template for chemical synthesis. The surface of vesicles and lipid microcylinders (0.5 μm dia.) is made reactive by chemically modifying the hydrophilic region of phospholipids. Lipids with chemically reactive sites were incorporated into lipid membranes predominantly formed from charge neutral lipids and used for binding metal ions and growing fine metal particles.


2017 ◽  
Vol 114 (6) ◽  
pp. E1009-E1017 ◽  
Author(s):  
Michele Perni ◽  
Céline Galvagnion ◽  
Alexander Maltsev ◽  
Georg Meisl ◽  
Martin B. D. Müller ◽  
...  

The self-assembly of α-synuclein is closely associated with Parkinson’s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson’s disease and related conditions.


2019 ◽  
Author(s):  
Siddhartha Banerjee ◽  
Mohtadin Hashemi ◽  
Karen Zagorski ◽  
Yuri L. Lyubchenko

AbstractThe assembly of polypeptides and proteins into nanoscale aggregates is a phenomenon observed in a vast majority of proteins. Importantly, aggregation of amyloid β (Aβ) proteins is considered as a major cause for the development of Alzheimer’s disease. The process depends on various conditions and typical test-tube experiments require high protein concentration that complicates the translation of results obtained in vitro to understanding the aggregation process in vivo. Here we demonstrate that Aβ42 monomers at the membrane bilayer are capable of self-assembling into aggregates at physiologically low concentrations, and the membrane in this aggregation process plays a role of a catalyst. We applied all-atom molecular dynamics to demonstrate that the interaction with the membrane surface dramatically changes the conformation of Aβ42 protein. As a result, the misfolded Aβ42 rapidly assembles into dimers, trimers and tetramers, so the on-surface aggregation is the mechanism by which amyloid oligomers are produced and spread.


2016 ◽  
Vol 52 (4) ◽  
pp. 495-499 ◽  
Author(s):  
Eui Ho Lee ◽  
Ki Seok Nam ◽  
Seon Kwang Lee ◽  
Eugeney Oh ◽  
Chan Yong Lee

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Andreas Weinberger ◽  
Vivien Walter ◽  
Sarah R. MacEwan ◽  
Tatiana Schmatko ◽  
Pierre Muller ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Naresh Yandrapalli ◽  
Quentin Lubart ◽  
Hanumant S. Tanwar ◽  
Catherine Picart ◽  
Johnson Mak ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 319
Author(s):  
Joyce El-Beyrouthy ◽  
Eric Freeman

The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.


Sign in / Sign up

Export Citation Format

Share Document