scholarly journals The evolution of stress response and complex life history traits in natural populations of garter snakes

2012 ◽  
Author(s):  
Tonia Sue Schwartz
2016 ◽  
Vol 12 (6) ◽  
pp. 20160101 ◽  
Author(s):  
Alexis Rutschmann ◽  
Donald B. Miles ◽  
Jean Clobert ◽  
Murielle Richard

Life-history traits involved in trade-offs are known to vary with environmental conditions. Here, we evaluate the response of the trade-off between ‘offspring number’ versus ‘energy invested per offspring’ to ambient temperature in 11 natural populations of the common lizard, Zootoca vivipara . We provide evidence at both the intra- and interpopulation levels that the trade-off is reduced with an increase in air temperature. If this effect enhances current individual fitness, it may lead to an accelerated pace of life in warmer environments and could ultimately increase adult mortality. In the context of global warming, our results advocate the need for more studies in natural populations to explore interactions between life-history traits' trade-offs and environmental conditions.


2012 ◽  
Vol 90 (6) ◽  
pp. 758-765 ◽  
Author(s):  
Krysia N. Tuttle ◽  
Patrick T. Gregory

High-latitude environments are challenging for terrestrial ectotherms because short and cool active seasons generally limit the time available for foraging and growth, thereby negatively influencing life-history variables such as growth rate and age at maturity and ultimately, via fitness differences, their evolution. Many species show latitudinal clines in life-history traits, including growth rate and body size. We estimated growth curves of Plains Garter Snakes ( Thamnophis radix (Baird and Girard, 1853)) near the northern limit of the species’ range in central Alberta and compared our findings to similar estimates for more southerly populations. Despite a short growing season, female T. radix at Miquelon Lake grew rapidly, reaching maturity in 1 or 2 years, similar to southern populations, and attained greater maximum sizes than snakes in southern populations. Overall, growth in this high-latitude population is comparable with what is seen in other conspecific populations. Possible reasons for lack of marked latitudinal effect include longer days at high latitudes, highly productive aquatic habitats for foraging, effective thermoregulation, reduced competition, and (or) countergradient variation in growth rate.


2021 ◽  
Vol 376 (1823) ◽  
pp. 20190745
Author(s):  
Svenja B. Kroeger ◽  
Daniel T. Blumstein ◽  
Julien G. A. Martin

Studies in natural populations are essential to understand the evolutionary ecology of senescence and terminal allocation. While there are an increasing number of studies investigating late-life variation in different life-history traits of wild populations, little is known about these patterns in social behaviour. We used long-term individual based data on yellow-bellied marmots (Marmota flaviventer) to quantify how affiliative social behaviours and different life-history traits vary with age and in the last year of life, and how patterns compare between the two. We found that some social behaviours and all life-history traits varied with age, whereas terminal last year of life effects were only observed in life-history traits. Our results imply that affiliative social behaviours do not act as a mechanism to adjust allocation among traits when close to death, and highlight the importance of adopting an integrative approach, studying late-life variation and senescence across multiple different traits, to allow the identification of potential trade-offs.This article is part of the theme issue ‘Ageing and sociality: why, when and how does sociality change ageing patterns?’


Plant Biology ◽  
2010 ◽  
Vol 13 ◽  
pp. 125-135 ◽  
Author(s):  
C. Dechamps ◽  
N. Elvinger ◽  
P. Meerts ◽  
C. Lefèbvre ◽  
J. Escarré ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 172218 ◽  
Author(s):  
Gabrielle L. Davidson ◽  
Michael S. Reichert ◽  
Jodie M. S. Crane ◽  
William O'Shea ◽  
John L. Quinn

Personality research suggests that individual differences in risk aversion may be explained by links with life-history variation. However, few empirical studies examine whether repeatable differences in risk avoidance behaviour covary with life-history traits among individuals in natural populations, or how these links vary depending on the context and the way risk aversion is measured. We measured two different risk avoidance behaviours (latency to enter the nest and inspection time) in wild great tits ( Parus major ) in two different contexts—response to a novel object and to a predator cue placed at the nest-box during incubation---and related these behaviours to female reproductive success and condition. Females responded equally strongly to both stimuli, and although both behaviours were repeatable, they did not correlate. Latency to enter was negatively related to body condition and the number of offspring fledged. By contrast, inspection time was directly explained by whether incubating females had been flushed from the nest before the trial began. Thus, our inferences on the relationship between risk aversion and fitness depend on how risk aversion was measured. Our results highlight the limitations of drawing conclusions about the relevance of single measures of a personality trait such as risk aversion.


2017 ◽  
Author(s):  
S Vincenzi ◽  
D Jesensek ◽  
JC Garza ◽  
AJ Crivelli

AbstractA stronger correlation between heterozygosity and fitness or its components (e.g., life-history traits such as survival, growth, morphology) is expected in harsher environments, but few studies have investigated whether the effects of heterozygosity on life-history traits vary with environmental conditions in natural populations. Here, the hypothesis that the effects of heterozygosity vary with environmental conditions was tested using six populations of marble trout Salmo marmoratus from Western Slovenia as a model system. Specifically, the tested hypotheses were: stronger effects of heterozygosity on survival in populations characterized by low average survival, no effects of heterozygosity on probability of surviving flash floods owing to their largely non-selective effects across traits, and stronger effects of heterozygosity on survival for fish born after floods than fish born before. A significant effect of heterozygosity on survival was found in populations characterized by low average survival. There were no effects of heterozygosity on probability of surviving flash floods, but in one population a positive correlation between heterozygosity and survival for fish born after the extreme events was found, probably because crowding in a small section of the stream caused more intense competition for resources.


2021 ◽  
Author(s):  
Thomas Merrien ◽  
Katrina Joan Davis ◽  
Pol Capdevila ◽  
Moreno Di Marco ◽  
Roberto Salguero-Gomez

The exponential growth that has characterised human societies since the industrial revolution has fundamentally modified our surroundings. Examples include rapid increases in agricultural fields, now accounting for 37% of the land surface, as well as increases in urban areas, projected to triple worldwide by 2030. As such, understanding how species have adapted to and will respond to increasing human pressures is of key importance. Resilience, the ability of an ecological system to resist, recover, and even benefit from disturbances, is a key concept in this regard. Here, using a recently develop comparative demographic framework, we examine how the inherent ability of 921 natural populations of 279 plants and 45 animal species worldwide to respond to disturbances correlates with human settlement size and human activities. We develop a spatially and phylogenetically explicit model parameterised with life history traits and metrics of demographic resilience using the open-access COMPADRE and COMADRE databases, coupled with high-resolution human impact information via the Human Footprint database. We expected: (H1) populations located nearer urban areas to have a greater ability to resist, recover, or benefit from human-related disturbances compared to pristine habitats; (H2) human effects on the responses of animal populations to disturbances to depend on the ability for long-distance mobility; and (H3): human pressures to constrain the repertoire of life history strategies of animal and plant species via their effects on underlying vital rates and life history traits. We find that: (1) urban areas host a limited diversity of strategies that achieve demographic resilience with, on average, more resistant and faster-recovery populations located near human activities than in pristine habitats; (2) species with limited mobility tend to be more strongly affected by human activities than those with long-distance mobility; and (3) human pressures correlate with a limited set of vital rates and life history traits, including the ability to shrink, and reproduce earlier. Our results provide a tangible picture of how, having drastically transformed terrestrial landscapes, humans have shaped the ways animals and plants respond to disturbances.


2013 ◽  
Vol 103 (4) ◽  
pp. 406-413 ◽  
Author(s):  
Chia-Yu Chen ◽  
Ming-Chih Chiu ◽  
Mei-Hwa Kuo

AbstractTo estimate the net effect of climate change on natural populations, we must take into account the positive and negative effects of temperature oscillations and climate variability. Warming because of climate change will likely exceed the physiological optima of tropical insects, which currently live very close to their thermal optima. Tropical insects will be negatively affected if their optima are exceeded otherwise warming may affect them positively. We evaluate the demographic responses of the cowpea aphid,Aphis craccivora, to summer warming in subtropical and tropical Taiwan, and examine the effects of diel temperature oscillation on these responses. Aphids were reared at four temperatures (current summer mean, +1.4, +3.9 and +6.4 °C), the latter three simulating different levels of warming. At each average temperature, aphids experienced constant or oscillating (from −2.9 to +3.6 °C of each mean temperature) regimes. As the simulated summer temperatures increased, so did the negative effects on life-history traits and demographic parameters. Compared with aphids reared in constant temperatures, aphids reared in oscillating temperatures developed more slowly and had a longer mean generation time, but their net reproductive rate was higher. These findings demonstrate that climate warming will affect demographic parameters and life-history traits differentially. Studies that use constant temperatures are unlikely to accurately predict biotic responses to climate change.


Sign in / Sign up

Export Citation Format

Share Document