Simulation of the rainfall runoff process from a watershed by using a microcomputer

1982 ◽  
Author(s):  
Luis G. Salgado
Keyword(s):  
2015 ◽  
Vol 48 (8) ◽  
pp. 605-612 ◽  
Author(s):  
Choi Jongin ◽  
◽  
Ji Jungwon ◽  
Yi Jaeeung

1992 ◽  
Vol 23 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Å. Spångberg ◽  
J. Niemczynowicz

The paper describes a measurement project aiming at delivering water quality data with the very fine time resolution necessary to discover deterministic elements of the complex process of pollution wash-off from an urban surface. Measurements of rainfall, runoff, turbidity, pH, conductivity and temperature with 10 sec time resolution were performed on a simple urban catchment, i.e. a single impermeable 270 m2 surface drained by one inlet. The paper presents data collection and some preliminary results.


1999 ◽  
Vol 39 (9) ◽  
pp. 201-207
Author(s):  
Andreas Cassar ◽  
Hans-Reinhard Verworn

Most of the existing rainfall runoff models for urban drainage systems have been designed for off-line calculations. With a design storm or a historical rain event and the model system the rainfall runoff processes are simulated, the faster the better. Since very recently, hydrodynamic models have been considered to be much too slow for real time applications. However, with the computing power of today - and even more so of tomorrow - very complex and detailed models may be run on-line and in real time. While the algorithms basically remain the same as for off-line simulations, problems concerning timing, data management and inter process communication have to be identified and solved. This paper describes the upgrading of the existing hydrodynamic rainfall runoff model HYSTEM/EXTRAN and the decision finding model INTL for real time performance, their implementation on a network of UNIX stations and the experiences from running them within an urban drainage real time control project. The main focus is not on what the models do but how they are put into action and made to run smoothly embedded in all the processes necessary in operational real time control.


1998 ◽  
Vol 37 (11) ◽  
pp. 155-162 ◽  
Author(s):  
B. Maul-Kötter ◽  
Th. Einfalt

Continuous raingauge measurements are an important input variable for detailed rainfall-runoff simulation. In North Rhine-Westphalia, more than 150 continuous raingauges are used for local hydrological design through the use of site specific rainfall runoff models. Requiring gap-free data, the State Environmental Agency developed methods to use a combination of daily measurements and neighbouring continuous measurements for filling periods of lacking data in a given raindata series. The objective of such a method is to obtain plausible data for water balance simulations. For more than 3500 station years the described methodology has been applied.


Sign in / Sign up

Export Citation Format

Share Document