scholarly journals Spatial distribution of arsenic in groundwater in the northwestern Hanoi

2021 ◽  
Vol 63 (11) ◽  
pp. 19-23
Author(s):  
Thi Duyen Vu ◽  
◽  
Thi Mai Tran ◽  
Thi Kim Trang Pham ◽  
Mai Lan Vi ◽  
...  

Arsenic contamination in groundwater is commonly found in alluvial plains of major river basins, in which the Red river delta has also been reported to be contaminated with high levels of arsenic. In this study, groundwater from 50 household wells was collected to study the spatial distribution of arsenic in northwestern Hanoi. The results showed that arsenic concentration in groundwater varied in a wide range of less than 5 to 334 μg/l, of which up 62% of the wells exceeded the WHO guideline value of 10 μg/l for arsenic content in drinking water. Arsenic groundwater in this area is unevenly distributed throughout the area, high arsenic concentrations are found in a narrow band between Red river and Day river. This pattern of arsenic distribution is strongly related to the sediment age, sedimentary processes, and it is also modified by local groundwater flow parts and the occurrence of hydraulic connection between aquifers, which are observed in the study area. Arsenic is released into the groundwater during the reductive dissolution of arsenic-bearing minerals under the presence of organic matter.

2020 ◽  
Vol 42 (2) ◽  
pp. 161-175
Author(s):  
Dang Tran Trung ◽  
Nguyen Thi Nhan ◽  
Than Van Don ◽  
Nguyen Kim Hung ◽  
Jolanta Kazmierczak ◽  
...  

In the Red River Delta, the concentrations of Arsenic in groundwater of alluvial dominated systems are very high, exceeding the WHO’s permissible. The correlation between the Arsenic concentrations in groundwater and the age of Holocene sediment as a key controlling groundwater Arsenic concentration in the Red River delta has been investigated. The evolution of sediments in the Holocene is closely related to paleo-riverbed migration in the past. A combination of methods is implemented including remote sensing, multi-electrode profiling (MEP), gamma-logging, drilling, soil sample and groundwater modeling. The resul has identified the shape, sediment compositions and location of the six paleo-riverbed periods. The age of the paleo-riverbed is determined by drilling, soil sampling and optically stimulated luminescence (OSL) in the laboratory. The oldest sediments is 5.9±0.4 ka BP in Phung Thuong near the mountain, the youngest one is from 0.4÷0.6 ka BP in H-transect near the Red River and the rest of the other is around 3.5 ka BP. The modeling results by using MODFLOW and MT3D show that the dynamics of paleo-riverbeds controlling Arsenic mobilization in groundwater in the Red River Delta. When the river moved to another position, the current river position at that time was filled with younger sediments and became paleo-riverbed formation with reducing conditions, Arsenic content which was adsorbed in the previous stage then released into groundwater. Therefore, Arsenic concentration in groundwater of young Holocene sediments is higher than in older ones which elucidates that paleo-riverbed migration controls on Arsenic mobilization in groundwater in the study area.


2020 ◽  
Vol 42 (2) ◽  
pp. 161-175
Author(s):  
Dang Tran Trung ◽  
Nguyen Thi Nhan ◽  
Than Van Don ◽  
Nguyen Kim Hung ◽  
Jolanta Kazmierczak ◽  
...  

In the Red River Delta, the concentrations of Arsenic in groundwater of alluvial dominated systems are very high, exceeding the WHO’s permissible. The correlation between the Arsenic concentrations in groundwater and the age of Holocene sediment as a key controlling groundwater Arsenic concentration in the Red River delta has been investigated. The evolution of sediments in the Holocene is closely related to paleo-riverbed migration in the past. A combination of methods is implemented including remote sensing, multi-electrode profiling (MEP), gamma-logging, drilling, soil sample and groundwater modeling. The resul has identified the shape, sediment compositions and location of the six paleo-riverbed periods. The age of the paleo-riverbed is determined by drilling, soil sampling and optically stimulated luminescence (OSL) in the laboratory. The oldest sediments is 5.9±0.4 ka BP in Phung Thuong near the mountain, the youngest one is from 0.4÷0.6 ka BP in H-transect near the Red River and the rest of the other is around 3.5 ka BP. The modeling results by using MODFLOW and MT3D show that the dynamics of paleo-riverbeds controlling Arsenic mobilization in groundwater in the Red River Delta. When the river moved to another position, the current river position at that time was filled with younger sediments and became paleo-riverbed formation with reducing conditions, Arsenic content which was adsorbed in the previous stage then released into groundwater. Therefore, Arsenic concentration in groundwater of young Holocene sediments is higher than in older ones which elucidates that paleo-riverbed migration controls on Arsenic mobilization in groundwater in the study area.


2021 ◽  
Vol 63 (11) ◽  
pp. 17-22
Author(s):  
Thi Duyen Vu ◽  
◽  
The Anh Lang ◽  
Thi Kim Trang Pham ◽  
Hung Viet Pham ◽  
...  

In this study, the author report detailed results of the variation of arsenic in groundwater along a transect in an area near the Hanoi city centre. The results showed that 64% of collected samples exceeded the WHO guideline value for arsenic concentration in drinking water. The arsenic concentration varied in a wide range, strongly depending on the sediment characteristics of each zone along the transect. Aside from As, groundwater in this area also was contaminated by elevated concentrations of Fe, Mn, and ammonium. The study also pointed out a positive correlation between As and reductive chemical species, namely DOC, NH4+, and CH4 in groundwater. Although there is no clear trend in the correlation between As and Fe, Mn, it can be concluded that the formation of arsenic in groundwater in the study area was due to the reductive dissolution of As-bearing iron minerals under the presence of organic matter.


2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


Water Policy ◽  
2009 ◽  
Vol 11 (3) ◽  
pp. 362-378 ◽  
Author(s):  
N. Nahar

In attempting to eliminate disease caused by drinking polluted surface water, millions of tube-wells were drilled in Bangladesh. However, owing to arsenic in groundwater, the availability of safe drinking water has declined from earlier achievement of 97% to 51.2%. This article reviews the causes and distribution of arsenic concentration in rural Bangladesh from a wide variety of literature. Scientists have converged to two hypotheses for causes of arsenic in groundwater: the pyrite oxidation hypothesis and the oxy-hydroxide reduction hypothesis. There is a positive correlation between arsenic content in irrigated groundwater and arsenic contained in soils. There is a significant presence of arsenic in rice and leafy vegetables. Today, arsenic is causing toxicity to human health and creating major social problems. This finding implies that, had there been a precautionary measure taken when a new technology tube-well was being introduced, in the form of testing water for harmful metals, the risk that the rural population is facing now could have been drastically reduced. This lack of precautionary measure, before starting a mass installation of tube-wells for drinking and irrigation should be seen as a “human error” and avoided in future water policy and planning.


Author(s):  
Jolanta Kazmierczak ◽  
Dieke Postma ◽  
Trung Dang ◽  
Hoan Van Hoang ◽  
Flemming Larsen ◽  
...  

2014 ◽  
Vol 49 (4) ◽  
pp. 354-371 ◽  
Author(s):  
Fan Liu ◽  
Guanxing Huang ◽  
Jichao Sun ◽  
Jihong Jing ◽  
Ying Zhang

To elucidate the distribution of arsenic in shallow aquifers of the Guangzhou region (South China), 85 groundwater samples were collected and 18 chemical parameters of them were analyzed. The arsenic concentration of groundwater ranged from below detection limit to 0.13 mg/L. The results showed that those areas with high arsenic concentration were characterized by porous aquifers, low-lying, relief topography and close proximity to fault belt and rivers. The reductive dissolution of Fe (hydr)oxides is the main control mechanism for arsenic enrichment in the river delta region where groundwater is mainly characterized by a reducing environment. This mechanism was well embodied in the areas with these geological and geographical features. Agricultural fertilizer could produce high levels of nitrate in groundwater and the reduction of it could restrain the enrichment of arsenic. Industrial effluents, sewage irrigation and the probable leakage from sewers could promote the arsenic content in groundwater by lateral flow and infiltration. In addition, the effect of ion competition between phosphate and arsenic occurred in sewer leakage areas characterized by middle-high construction leading to the elevation of arsenic concentrations. The arsenic distribution in groundwater was caused by these natural and anthropogenic factors jointly.


2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


Sign in / Sign up

Export Citation Format

Share Document