scholarly journals Eksperimen Pengenalan Wajah dengan fitur Indoor Positioning System menggunakan Algoritma CNN

2020 ◽  
Vol 22 (2) ◽  
pp. 109-116
Author(s):  
Yessi Hartiwi ◽  
Errissya Rasywir ◽  
Yovi Pratama ◽  
Pareza Alam Jusia

Facial recognition work combined with the facial owner's position estimation feature can be utilized in various everyday applications such as face attendance with position detection. Based on this, this study offers a system testing experiment that can be run with facial recognition features and an Indoor Positioning System (IPS) to automatically check the location of the owner of the face. Recently, deep learning algorithms are the most popular method in the world of artificial intelligence. Currently, the Deep Learning algorithm toolbox has provided various programming language platforms. Departing from research findings related to deep learning, this study utilizes this method to perform facial recognition. The system we offer is also capable of checking the position or whereabouts of objects using Indoor Positioning System (IPS) technology. Facial recognition evaluation using CNN obtained a maximum value = 92.89% and an accuracy error value of 7.11%. Meanwhile, the average accuracy obtained is 91.86%. In the evaluation of the estimated position tested using DNN, the highest value of r2 score is 0.934, the lowest is 0.930 and an average is 0.932 and the highest value is MSE is 4.578, the lowest is 4.366 and the average is 4.475. This shows that the facial recognition process that is tested is able to produce good values but not the position estimation process. Keywords: Face Recognition, IPS, CNN, MSE, Accuraccy.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiang Liu ◽  
XiuJun Bai ◽  
Xingli Gan ◽  
Shan Yang

In recent years, indoor positioning systems (IPS) are increasingly very important for a smart factory, and the Lora positioning system based on round-trip time (RTT) has been developed. This paper introduces the ranging characterization, RTT measurement, and position estimation method. In particular, a particle filter localization method-aided Lora pseudorange fitting correction is designed to solve the problem of indoor positioning; the cumulative distribution function (CDF) criteria are used to measure the quality of the estimated location in comparison to the ground truth location; when the positioning error on the x -axis threshold is 0.2 m and 0.6 m, the CDF with pseudorange correction is 61% and 99%, which are higher than the 32% and 85% without pseudorange correction. When the positioning error on the y -axis threshold is 0.2 m and 0.6 m, the CDF with pseudorange correction is 71% and 99.9%, which are higher than the 52% and 94.8% without pseudorange correction.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5776
Author(s):  
Zhongfeng Zhang ◽  
Minjae Lee ◽  
Seungwon Choi

In a Wi-Fi indoor positioning system (IPS), the performance of the IPS depends on the channel state information (CSI), which is often limited due to the multipath fading effect, especially in indoor environments involving multiple non-line-of-sight propagation paths. In this paper, we propose a novel IPS utilizing trajectory CSI observed from predetermined trajectories instead of the CSI collected at each stationary location; thus, the proposed method enables all the CSI along each route to be continuously encountered in the observation. Further, by using a generative adversarial network (GAN), which helps enlarge the training dataset, the cost of trajectory CSI collection can be significantly reduced. To fully exploit the trajectory CSI’s spatial and temporal information, the proposed IPS employs a deep learning network of a one-dimensional convolutional neural network–long short-term memory (1DCNN-LSTM). The proposed IPS was hardware-implemented, where digital signal processors and a universal software radio peripheral were used as a modem and radio frequency transceiver, respectively, for both access point and mobile device of Wi-Fi. We verified that the proposed IPS based on the trajectory CSI far outperforms the state-of-the-art IPS based on the CSI collected from stationary locations through extensive experimental tests and computer simulations.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4338
Author(s):  
Abdulkadir Uzun ◽  
Firas Abdul Ghani ◽  
Amir Mohsen Ahmadi Najafabadi ◽  
Hüsnü Yenigün ◽  
İbrahim Tekin

In this paper, an indoor positioning system using Global Positioning System (GPS) signals in the 433 MHz Industrial Scientific Medical (ISM) band is proposed, and an experimental demonstration of how the proposed system operates under both line-of-sight and non-line-of-sight conditions on a building floor is presented. The proposed method is based on down-converting (DC) repeaters and an up-converting (UC) receiver. The down-conversion is deployed to avoid the restrictions on the use of Global Navigation Satellite Systems (GNSS) repeaters, to achieve higher output power, and to expose the GPS signals to lower path loss. The repeaters receive outdoor GPS signals at 1575.42 MHz (L1 band), down-convert them to the 433 MHz ISM band, then amplify and retransmit them to the indoor environment. The front end up-converter is combined with an off-the-shelf GPS receiver. When GPS signals at 433 MHz are received by the up-converting receiver, it then amplifies and up-converts these signals back to the L1 frequency. Subsequently, the off-the-shelf GPS receiver calculates the pseudo-ranges. The raw data are then sent from the receiver over a 2.4 GHz Wi-Fi link to a remote computer for data processing and indoor position estimation. Each repeater also has an attenuator to adjust its amplification level so that each repeater transmits almost equal signal levels in order to prevent jamming of the off-the-shelf GPS receiver. Experimental results demonstrate that the indoor position of a receiver can be found with sub-meter accuracy under both line-of-sight and non-line-of-sight conditions. The estimated position was found to be 54 and 98 cm away from the real position, while the 50% circular error probable (CEP) of the collected samples showed a radius of 3.3 and 4 m, respectively, for line-of-sight and non-line-of-sight cases.


Author(s):  
Julius Yong Wu Jien ◽  
Aslina Baharum ◽  
Shaliza Hayati A. Wahab ◽  
Nordin Saad ◽  
Muhammad Omar ◽  
...  

Face recognition is the use of biometric innovations that can see or validate a person by seeing and investigating designs depending on the shape of the individual. Face recognition is used largely for the purpose of well-being, despite the fact that passion for different areas of use is growing. Overall, face recognition innovations are worth considering because they have the potential for broad legal jurisdiction and different business applications. It is widely used in many spaces. How it works is a product of facial recognition processing facial geometry. The hole between the ear and the good way from the front to the jaw are the main variables. This code distinguishes the highlight of the face that is important for your facial separation and creates your facial expression. Therefore, this study gives an overview of age detection using a different combination of machine learning and image processing methods on the image dataset.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3767
Author(s):  
Haotai Sun ◽  
Xiaodong Zhu ◽  
Yuanning Liu ◽  
Wentao Liu

Indoor positioning technologies are of great use in GPS-denied areas. They can be partitioned into two types of systems—infrastructure-free based and infrastructure-dependent based. WiFi based indoor positioning system is somewhere between the infrastructure-free and infrastructure-dependent systems. The reason is that in WiFi based systems, Access Points (APs) as pre-installed infrastructures are necessary. However, the APs do not need to be specially installed, because WiFi APs are already widely deployed in many indoor areas, for example, offices, malls and airports. This feature makes WiFi based indoor positioning suitable for many practical applications. In this paper, a seq2seq model based, deep learning method is proposed for WiFi based fingerprinting. The model can learn from different length of training sequences, and thus can exploit the context information for positioning. The context information denotes the information contained in the sequence, which can help finding the correspondences between RSS fingerprints and the coordinate positions. A simple example piece of context information is human walking routine (such as no sharp turns). The proposed method shows an improvement with an open source dataset, when compared against deep learning based counterpart methods.


Sign in / Sign up

Export Citation Format

Share Document