scholarly journals DESIGN METHOD OF THE LION TOMB AT AMPHIPOLIS : Design methods of Hellenistic tombs (1)

2007 ◽  
Vol 72 (613) ◽  
pp. 235-241
Author(s):  
Akisumi TAKEDA
Keyword(s):  
Author(s):  
Warren Brown

This paper details further progress made in the PVRC project “Development of Improved Flange Design Method for the ASME VIII, Div.2 Rewrite Project” presented during the panel session on flange design at the 2006 PVP conference in Vancouver. The major areas of flange design improvement indicated by that project are examined and the suggested solutions for implementing the improved methods into the Code are discussed. Further analysis on aspects such as gasket creep and the use of leakage-based design has been conducted. Shortcomings in the proposed ASME flange design method (ASME BFJ) and current CEN flange design methods (EN-1591) are highlighted and methods for resolution of these issues are suggested.


Author(s):  
Jan Schumann ◽  
Ulrich Harbecke ◽  
Daniel Sahnen ◽  
Thomas Polklas ◽  
Peter Jeschke ◽  
...  

The subject of the presented paper is the validation of a design method for HP and IP steam turbine stages. Common design processes have been operating with simplified design methods in order to quickly obtain feasible stage designs. Therefore, inaccuracies due to assumptions in the underlying methods have to be accepted. The focus of this work is to quantify the inaccuracy of a simplified design method compared to 3D Computational Fluid Dynamics (CFD) simulations. Short computing time is very convenient in preliminary design; therefore, common design methods work with a large degree of simplification. The origin of the presented analysis is a mean line design process, dealing with repeating stage conditions. Two features of the preliminary design are the stage efficiency, based on loss correlations, and the mechanical strength, obtained by using the beam theory. Due to these simplifications, only a few input parameters are necessary to define the primal stage geometry and hence, the optimal design can easily be found. In addition, by using an implemented law to take the radial equilibrium into account, the appropriate twist of the blading can be defined. However, in comparison to the real radial distribution of flow angles, this method implies inaccuracies, especially in regions of secondary flow. In these regions, twisted blades, developed by using the simplified radial equilibrium, will be exposed to a three-dimensional flow, which is not considered in the design process. The analyzed design cases show that discrepancies at the hub and shroud section do exist, but have minor effects. Even the shroud section, with its thinner leading-edge, is not vulnerable to these unanticipated flow angles.


1989 ◽  
Vol 111 (4) ◽  
pp. 837-843 ◽  
Author(s):  
H. Jaber ◽  
R. L. Webb

This paper develops the effectiveness-NTU design method for cooling towers. The definitions for effectiveness and NTU are totally consistent with the fundamental definitions used in heat exchanger design. Sample calculations are presented for counter and crossflow cooling towers. Using the proper definitions, a person competent in heat exchanger design can easily use the same basic method to design a cooling tower of counter, cross, or parallel flow configuration. The problems associated with the curvature of the saturated air enthalpy line are also treated. A “one-increment” design ignores the effect of this curvature. Increased precision can be obtained by dividing the cooling range into two or more increments. The standard effectiveness-NTU method is then used for each of the increments. Calculations are presented to define the error associated with different numbers of increments. This defines the number of increments required to attain a desired degree of precision. The authors also summarize the LMED method introduced by Berman, and show that this is totally consistent with the effectiveness-NTU method. Hence, using proper and consistent terms, heat exchanger designers are shown how to use either the standard LMED or effectiveness-NTU design methods to design cooling towers.


Author(s):  
Danielle Poreh ◽  
Euiyoung Kim ◽  
Varna Vasudevan ◽  
Alice Agogino

Despite the growing utilization of human-centered design, both in academia and industry, there is lack of pedagogical materials that support context-based design method selection. When used properly, design methods are linked to successful outcomes in the design process, but with hundreds of design methods to select from, knowing when and how to use a particular method is challenging. Selecting the appropriate design method requires a deep understanding of the project context. Cultivating a selection methodology that is more contextually aware, equips students with the tools to apply the most appropriate methods to their future academic and industry projects. Using theDesignExchange knowledge platform as a teaching material, we discuss a summer design course at the University of California at Berkeley that encourages students to choose design methods rather than the instructors giving a set list. The findings illustrate that when given the task to select a method, students exhibit contextually-aware method selection mindsets.


Author(s):  
Xiaoxia Lai ◽  
John K. Gershenson

Researchers have expanded the definition of product modularity from function-based modularity to life-cycle process-based modularity. In parallel, measures of product modularity have been developed as well as corresponding modular product design methods. However, a correct modularity measure and modular design method are not enough to realize modular product design. To apply the measure and design method correctly, product representation becomes an important aspect of modular design and imperative for realizing the promised cost savings of modularity. In this paper, a representation for retirement process-based modular design has been developed. Built upon previous representations for assembly and manufacturing-based product design, the representation includes a process similarity matrix and a process dependency matrix. The retirement process-based similarity is based on the similarity in components’ post-life intents (recycling, reuse, disposal), and either the degree of their material compatibility if the components will be recycled, or their disassembly direction or disassembly tools if they need to be disassembled from each other for retirement. Process similarity within a module leads to increased process efficiency (the elimination of non-value added tasks) from the sharing of tooling/equipment. Retirement process-based dependency is developed based on disassembly difficulty, one aspect of the physical interactions between components. Retiring components together as a module to eliminate disassembly and differential processing and reducing the disassembly difficulty between the modules can increase the efficiency of the retirement process. We have first presented which process elements we should consider for defining retirement process similarity and dependency, and then constructed the respective similarity and dependency factors tables. These tables include similarity and dependency factors, which, along with their quantifications, are used to determine a product’s modular architecture to facilitate the retirement process. Finally, a fishing reel is used to illustrate how to apply these factors tables to generate the similarity and dependency matrices that represent a product for retirement-process based modular design. Using these representations as input to the DSM-based modular design methods, we can achieve a design with a modular architecture that improves the retirement process efficiency and reduces retirement costs.


2019 ◽  
Vol 256 ◽  
pp. 02001
Author(s):  
Ren Xincheng ◽  
Hongjun Li ◽  
Xun Huang

Stress categorization is an essential procedure in Design by Analysis (DBA) pressure vessel design methods based on elastic analysis in ASME and EN code. It was difficult to implement especially around structural discontinuities. A new elastic analysis, DBA-L, was proposed recently to avoid stress categorization. A model of the cylindrical pressure vessel with spherical end is used to check the validity of this method by comparing with other design methods based on stress categorization procedures and elastic-plastic stress analysis from ASME and EN code. The results indicate that the DBA-L is an economic and explicit method, and can be used an alternative method to stress categorization.


Author(s):  
Wei Li ◽  
Daniel A. McAdams

As the advantages of foldable or deployable structures are being discovered, research into origami engineering has attracted more focus from both artists and engineers. With the aid of modern computer techniques, some computational origami design methods have been developed. Most of these methods focus on the problem of origami crease pattern design — the problem of determining a crease pattern to realize a specified origami final shape, but don’t provide computational solutions to actually developing a shape that meets some design performance criteria. This paper presents a design method that includes the computational design of the finished shape as well as the crease pattern. The origami shape will be designed to satisfy geometric, functional, and foldability requirements. This design method is named computational evolutionary embryogeny for optimal origami design (CEEFOOD), which is an extension of the genetic algorithm (GA) and an original computational evolutionary embryogeny (CEE). Unlike existing origami crease pattern design methods that adopt deductive logic, CEEFOOD implements an abductive approach to progressively evolve an optimal design. This paper presents how CEEFOOD — as a member of the GA family — determines the genetic representation (genotype) of candidate solutions, the formulation of the objective function, and the design of evolutionary operators. This paper gives an origami design problem, which has requirements on the folded-state profile, position of center of mass, and number of creases. Several solutions derived by CEEFOOD are listed and compared to highlight the effectiveness of this abductive design method.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
K. J. Jenkins ◽  
C. E. Rudman ◽  
C. R. Bierman

The evolution of cold recycling using bitumen stabilisation technology has been supported by progressive research initiatives and best practice guidelines. The first generic guidelines for bitumen stabilised materials (BSMs) were published only in 2002. These guidelines provided a generic approach for the analysis of foamed bitumen and bitumen emulsion technologies. From that point, bitumen stabilisation became the common term for the inclusion of either of the two bituminous binders. The TG2 2nd edition guideline of 2009 took a bold step recognising the shear properties of the bitumen stabilised material (BSM) as the key performance indicators. In addition, advancements in structural design and application of BSMs provided practitioners with robust guidelines. The subsequent decade has provided an opportunity to interrogate data from more than 300 BSM mix designs and 69 LTPP sections. The data have led to research developments including significant new performance properties of BSMs, refined mix design methods, and updated new pavement design methods. This includes an entire design process that has been updated with a streamlined mix design procedure and a new frontier curve for the pavement number design method, as well as a new mechanistic design function. It is anticipated that the research findings and implementation of the newly developed technology will lead to improved application in BSM technology.


2012 ◽  
Vol 490-495 ◽  
pp. 2191-2195
Author(s):  
Jing Gao Lin ◽  
Jue Yang ◽  
Wen Ming Zhang

In the paper, analysis and comparison is made for different optimization design methods of the separation steering trapezoidal mechanism based on the steering system of 170 tons mining dump truck. The optimal design method is obtained, and research shows that the steering mechanism analysis method introduced in many automotive design textbooks has errors and should be improved.


2013 ◽  
Vol 397-400 ◽  
pp. 882-888
Author(s):  
Yong Liu ◽  
Sheng Rui Yuan ◽  
Na Zhou ◽  
Xun Yi Dang

In allusion to the current existing problems of automotive wire-harness design, which are no interaction between 2D design and 3D design, and disconnect between design level and simulation level, the advanced design methods are needed. In this paper, it puts forward a kind of automotive wire-harness design method based on CHS and PRO/E software. Then it details its design steps including schematic / layout / harness design, 3D interaction, data management, etc. Finally, it summarizes the advantages of this advanced design method.


Sign in / Sign up

Export Citation Format

Share Document