scholarly journals FLEXURAL BEHAVIOR OF CONCRETE FILLED CIRCULAR STEEL TUBULAR COLUMNS SUBJECTED TO MONOTONIC BENDING MOMENT UNDER CONSTANT AXIAL LOAD : Part 1 Influence of confinement effect and residual stresses

Author(s):  
Toshihiko NINAKAWA ◽  
Kenji SAKINO ◽  
Ichiro ISHIDE

Splice zone is the lower base of cross-section and a part of column which is also known as lower hinge zone. It is the weaker part of the column so additional reinforcement should be required every time in case of regular pad footing. The presented research provides a way of strengthening the reinforced concrete column by applying wedges at the splice zone. The work is focused on the base cross-section of an isolated footing against deflection, stresses, bending moment, etc. By implementing the proposed work, we can avoid critical damage at the base cross-section of the column & it also provides more stability, thus make splice zone stronger than earlier to withstand the resistance. The two sets of footings are considered in which one is regular pad footing & the other is pad footing strengthened by applying wedges in the splice zone. Both of them are tested under constant axial load and moment. The static structural analysis is done by using finite element analysis in ANSYS 2016 software. Further we will observe the deflection, stresses & also the overall effects of applying wedges with multiple height & size at the splice zone of the column.


2008 ◽  
Vol 400-402 ◽  
pp. 685-691
Author(s):  
Hui Qu ◽  
Lin Hai Han ◽  
Zhong Tao

In this paper, eight reinforced concrete (RC) beam to concrete-filled steel tubular (CFST) column joints enclosed by rebars were tested under reversal horizontal displacement with constant axial load in order to study their seismic behavior. The test parameters are axial load level and the section type of CFST column. In this study, the failure model, hysteretic characteristic, ductility and energy dissipation were investigated. The results indicated that the anti-earthquake abilities of all joints satisfied with the demand on the code.


2012 ◽  
Vol 138 (12) ◽  
pp. 1436-1445 ◽  
Author(s):  
D. Hernández-Figueirido ◽  
M. L. Romero ◽  
J. L. Bonet ◽  
J. M. Montalvá

2017 ◽  
Vol 68 (6) ◽  
pp. 1267-1273
Author(s):  
Valeriu V. Jinescu ◽  
Angela Chelu ◽  
Gheorghe Zecheru ◽  
Alexandru Pupazescu ◽  
Teodor Sima ◽  
...  

In the paper the interaction of several loads like pressure, axial force, bending moment and torsional moment are analyzed, taking into account the deterioration due to cracks and the influence of residual stresses. A nonlinear, power law, of structure material is considered. General relationships for total participation of specific energies introduced in the structure by the loads, as well as for the critical participation have been proposed. On these bases: - a new strength calculation methods was developed; � strength of tubular cracked structures and of cracked tubular junction subjected to combined loading and strength were analyzed. Relationships for critical state have been proposed, based on dimensionless variables. These theoretical results fit with experimental date reported in literature. On the other side stress concentration coefficients were defined. Our one experiments onto a model of a pipe with two opposite nozzles have been achieved. Near one of the nozzles is a crack on the run pipe. Trough the experiments the state of stress have been obtained near the tubular junction, near the tip of the crack and far from the stress concentration points. On this basis the stress concentration coefficients were calculated.


2007 ◽  
Vol 345-346 ◽  
pp. 1437-1440
Author(s):  
Tae Hyun Baek ◽  
Seung Kee Koh ◽  
Jie Cheng

Pre-produced triplate transition joint assemblies are widely used in shipbuilding industry to make welds between aluminum and steel for a number of years now. The straight-shaped transition joint assemblies are bent during shipbuilding. So it is necessary to study the residual stresses created by punch forming, which would have heavy effects on the quality of structural parts. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, ABAQUS was used as the main tool to simulate the residual stresses in a triplate transition joint after unloading. Punch-pressing was carried to simulate bending moment in ABAQUS. The triplate is consisted of baselayer (steel: Lloyd’s Shipplate Gr. A), interlayer (pure aluminum: Al99.5) and superlayer (Al-Mg alloy: AlMg4.5Mn). Results from the ABAQUS analysis showed that increasing the radius of punch significantly reduced the von Mises residual stresses in steel. Changes of von Mises residual stresses in interlayer (Al99.5) and superlayer (AlMg4.5Mn) were negligible.


2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Van Binh Phung ◽  
Anh Tuan Nguyen ◽  
Hoang Minh Dang ◽  
Thanh-Phong Dao ◽  
V. N. Duc

The present paper analyzes the vibration issue of thin-walled beams under combined initial axial load and end moment in two cases with different boundary conditions, specifically the simply supported-end and the laterally fixed-end boundary conditions. The analytical expressions for the first natural frequencies of thin-walled beams were derived by two methods that are a method based on the existence of the roots theorem of differential equation systems and the Rayleigh method. In particular, the stability boundary of a beam can be determined directly from its first natural frequency expression. The analytical results are in good agreement with those from the finite element analysis software ANSYS Mechanical APDL. The research results obtained here are useful for those creating tooth blade designs of innovative frame saw machines.


Sign in / Sign up

Export Citation Format

Share Document