scholarly journals STUDIES ON SEISMIC CHARACTERISTIC OF REINFORCED CONCRETE SPANDRELBEAM-COLUMN SUBASSEMBLAGES WITH STRUCTURAL SLITS : Part I The results of lateral loading tests of spandrel-beam-column subassemblages

Author(s):  
MASAMICHI OHKUBO ◽  
SHIN-ICHI SHIOYA
Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2016 ◽  
Vol 711 ◽  
pp. 982-988
Author(s):  
Alex Brodsky ◽  
David Z. Yankelevsky

Numerous studies have been conducted on the in plane behavior of masonry infill walls to lateral loading simulating earthquake action on buildings. The present study is focused on a problem that has almost not been studied regarding the vertical (opposed to lateral) in-plane action on these walls. This may be of concern when a supporting column of a multi-storey reinforced concrete frame with infill masonry walls undergoes a severe damage due to an extreme loading such as a strong earthquake, car impact or military or terror action in proximity to the column. The loss of the supporting column may cause a fully or partly progressive collapse to a bare reinforced concrete frame, without infill masonry walls. The presence of the infill masonry walls may restrain the process and prevent the development of a progressive collapse. The aim of the present study is to test the in-plane composite action of Reinforced Concrete (RC) frames with infill masonry walls under vertical loading through laboratory experiments and evaluate the contributions of infill masonry walls, in an attempt to examine the infill masonry wall added resistance to the bare frame under these circumstances. Preliminary results of laboratory tests that have been conducted on reinforced concrete infilled frames without a support at their end, under monotonic vertical loading along that column axis will be presented. The observed damages and failure modes under vertical loading are clearly different from the already known failure modes observed in the case of lateral loading.


2019 ◽  
Vol 22 (7) ◽  
pp. 1727-1738 ◽  
Author(s):  
Masoud Pourbaba ◽  
Hamed Sadaghian ◽  
Amir Mirmiran

In this research, the flexural and shear behavior of five locally developed ultra-high-performance fiber-reinforced concrete beams was experimentally investigated. Four-point loading tests were carried out on concrete specimens which were further compared with five normal-strength concrete beams constructed at the laboratory. The objective of this study is to assess the flexural and shear behavior of ultra-high-performance fiber-reinforced concrete beams and compare them with that of normal-strength beams and available equations in the literature. Results indicate underestimation of shear (up to 2.71 times) and moment capacities (minimum 1.27 times, maximum 3.55 times) by most of the equations in beams with low-reinforcement ratios. Finally, results reveal that the experimental flexural and shear capacities of ultra-high-performance fiber-reinforced concrete specimens are up to 3.5 times greater than their normal-strength counterpart specimens.


Author(s):  
Toshinori Kawabata ◽  
Kazunori Uchida ◽  
Hoe I. Ling ◽  
Hitoshi Nakase ◽  
Yutaka Sawada ◽  
...  

1990 ◽  
Vol 211 ◽  
Author(s):  
Colin D. Johnston

AbstractThree of the most important properties of fiber-reinforced concrete (FRC) are strength, toughness and resistance to cracking. The various methods of evaluating them are compared in terms of underlying rationale, ability to characterize composite material behavior in a readily understandable manner minimally affected by testing variables, and suitability for routine use in specifying and controlling concrete quality. The scope includes dynamic loading tests, slow-rate (static) loading tests, and tests to evaluate cracking induced directly by load or indirectly by restraint during shrinkage or thermal change.Consideration of the advantages and disadvantages of the various alternatives shows that slow flexure testing in accordance with the rationale developed by the writer and incorporated into ASTM standard C1018 effectively characterizes the FRC in terms of first-crack strength, toughness, and residual strength after first crack up to any predetermined level of serviceability expressed in terms of maximum permissible deflection. Although not part of the standard, resistance to cracking under load may also be assessed by measuring crack widths at appropriate deflections.


2019 ◽  
Vol 22 (11) ◽  
pp. 2392-2405 ◽  
Author(s):  
Jiaxing Ma ◽  
Bing Li

Peak shear strength is a critical parameter in the evaluation of the seismic performance of structural walls. Different equations have been proposed to predict the peak shear strength of reinforced concrete squat walls in literature, which assume lateral loading is parallel to the web. In reality, however, seismic waves can reach structures from any direction, which necessitates the studies on the behavior of structural walls under various lateral loading directions. Unlike rectangular walls, non-rectangular walls naturally possess the capacity to resist lateral loads in both transverse and longitudinal directions. To explore the peak shear strength of such walls under different lateral loading directions, a widely used nonlinear finite element software Diana 9.4 was utilized in this article. Appropriate modeling approaches were first selected and further validated by simulating relevant experiments. Then a comprehensive parametric study was carried out to investigate the influence of lateral loading directions and other important parameters.


Sign in / Sign up

Export Citation Format

Share Document