scholarly journals Vacuum Nanotechnology. Synthesis of New Materials and Characterization of Surfaces and Interfaces. Development of Ion Beam Deposition Technique and Formation of High Corrosion Resistance Fe Films.

Shinku ◽  
1998 ◽  
Vol 41 (11) ◽  
pp. 940-949
Author(s):  
Kiyoshi MIYAKE
2008 ◽  
Vol 516 (23) ◽  
pp. 8604-8608 ◽  
Author(s):  
C. Bundesmann ◽  
I.-M. Eichentopf ◽  
S. Mändl ◽  
H. Neumann

2019 ◽  
Vol 29 (5) ◽  
pp. 1-5 ◽  
Author(s):  
Michael E. Cyberey ◽  
Tannaz Farrahi ◽  
Michael Eller ◽  
Jiwei Lu ◽  
Robert M. Weikle ◽  
...  

1995 ◽  
Vol 402 ◽  
Author(s):  
H. Shibatal ◽  
Y. Makital ◽  
H. Katsumata ◽  
S. Kimura ◽  
N. Kobayashil ◽  
...  

AbstractWe have developed successfully the combined ion beam and molecular beam epitaxy (CIBMBE) system with a newly designed Knudsen cell for Si effusion. The CIBMBE system was applied to the epitaxial growth of Sil., Cx alloy thin films on Si using low-energy ( 100 – 300 eV ) C+ ion beam. Preliminary results on the characterization of the deposited films suggest high potential and reliability of the new Knudsen cell for Si effusion, as well as high ability of the CIBMBE method to produce thermally non-equilibrium materials. In addition, they indicate that the value of x decreases with increasing IC, which suggests that the selective sputtering for deposited C atoms by incident C+ ion beams takes place during CIBMBE processing. Precipitates of β-SiC were also found to be formed in the deposited films, whose amount was observed to increase with increasing IC.


Sign in / Sign up

Export Citation Format

Share Document