scholarly journals THE ESTIMATION OF PEATLANDS RESERVE ON CARBON IN THE FOREST AND SHRUBS THAT HAS BEEN DRAINED

2016 ◽  
Vol 1 (1) ◽  
pp. 56-63
Author(s):  
Siti Fatimah Batubara ◽  
Fahmuddin Agus

Global warming and greenhouse gas emissions (GHGs) became a hot issue in the world today. An increased concentration of carbon in the atmosphere becomes one of the serious problems that can affect life on Earth. Peatlands pointed out as one of the sources of GHG emissions. Drainage of peatlands cause decreased water level so that the decomposition process is faster on a layer above the groundwater table, thus affecting the chemical characteristics of peat. In addition to affecting the ground water level, drainage also leads to a decrease in surface height peat soil (subsidence). Given the magnitude of the role of drainage and land use types in affecting carbon stocks and emissions of CO2 on peat soil, this study is to measure carbon stocks and emissions of CO2 on peat soil in forests and shrubs that have been drained. CO2 emissions increase with the closer spacing of the drainage channel that is at a distance of 50 m to 500 m of drainage channels. Meanwhile, at a distance of 5 m and 10 m of the drainage channel can not be concluded because of the condition of ground water that is stagnant at the time of sampling gas, so be very low CO2 emissions. CO2 emissions on the use of forest land are higher than the shrub land.

1951 ◽  
Vol 41 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
H. H. Nicholson ◽  
G. Alderman ◽  
D. H. Firth

1. The methods of investigation of the effect of ground water-level on crop growth, together with tho field installations in use, are discussed.2. Direct field experiments are handicapped by the difficulties of achieving close control on a sufficiently large scale, due to considerable variations of surface level and depth of peat within individual fields and to rapid fluctuations in rainfall and evaporation. Many recorded experiments are associated with climatic conditions of substantial precipitation during the growing season.3. Seasonal fluctuations of ground water-level in Fen peat soils in England, in natural and agricultural conditions, are described.4. The local soil conditions are outlined and the implications of profile variations are discussed.5. The effective control of ground water-level on a field scale requires deep and commodious ditches and frequent large underdrains to ensure the movement of water underground with sufficient freedom to give rapid compensatory adjustment for marked disturbances of ground water-level following the incidence of heavy rain or excessive evaporation.6. A working installation for a field experiment in ordinary farming conditions is described and the measure of control attained is indicated.


1958 ◽  
Vol 50 (3) ◽  
pp. 243-252 ◽  
Author(s):  
H. H. Nicholson ◽  
D. H. Firth

An account is given of a field experiment in the control of ground water-level in a Fen peat soil, together with its results on the yields of crops in a six-course rotation.The seasonal variations in rainfall are presented in terms of potential evaporation and soil moisture deficit. The effect of the water-level on the moistness of the soil above it is indicated. Even in a wet summer, drying was perceptible within 18–20 in. of the ground water-level between successive falls of rain.The fluctuations of the ground water-levels are discussed. Those of the high water-levels were chiefly due to individual incidences of rain causing rises short in duration, but sufficient in the case of water-levels within 20 in. of the surface to cause total waterlogging and surface ponding. Those of the deep water-levels were most influenced by evaporation, with steady and persistent falls during any rain-free period.The deterioration of the physical condition of the soil over high water-levels is shown in the result of sieving tests. In 6 years the loss of tilth over waterlevels within 20 in. of the surface was very marked and was discernible over those as low as 30 in.The possibilities of effectively using high ground water-levels occasionally in soils in good condition are shown by the results with celery and potatoes.


1953 ◽  
Vol 43 (1) ◽  
pp. 95-104 ◽  
Author(s):  
H. H. Nicholson ◽  
D. H. Firth

1. Observations made on growing a series of crops in rotation over a range of static ground water-levels in a Fen peat soil are recorded.2. The crops used show differences in their reaction to ground water conditions, and the seasonal incidence of rain has an overriding influence on their performance.3. The effects of ground water-level may operate directly on the growth and development of a crop or may influence it indirectly through factors such as weed infestation, difficulties of cultivation, or the incidence of disease.


Agric ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 25
Author(s):  
Eni Yulianingsih

<p>ABSTRACT</p><p>Peatland development is increasingly becoming a strategic, both in terms of aspects of agronomy, and environmental aspects. Information magnitude of GHG emissions from drainage canals are important in the management of peat sustainability. Its objective is to determine the amount of GHG emissions from peatland drainage channels that are used for traditional rubber plantation. Gas sampling is done in the secondary drainage channel with a channel width of 5 m and 3 m wide tertiary. Sampling was performed six times with five points by using the lid closed cylinder. Sample was analyzed by gas chromatography flame ionization detector incorporates detector (FID) for the determination of the concentration of CH4. CH4 fluxes in peatland drainage channel width of 5 m is relatively higher than in the drainage channel width of 3 m in Jabiren peatlands of Central Kalimantan. GHG emissions in the channel width of 5 m was 542,20 ± 258,57 kg CO2-e yr-1 and 379,14 ± 260,7 kg CO2-e yr-1 of the channel width of 3 m.</p>


1953 ◽  
Vol 43 (3) ◽  
pp. 265-274 ◽  
Author(s):  
H. H. Nicholson ◽  
D. H. Firth ◽  
A. Eden ◽  
G. Alderman ◽  
C. J. L. Baker ◽  
...  

1. Further studies were carried out during 1950 on the effects of different ground water-levels upon the productivity and composition of Italian ryegrass grown on a calcareous light peat soil. The season was an unusually wet one, in contrast with the dry season experienced in 1949.2. Seven successive cuts were taken during the season from each of two crops of ryegrass, one following a crop of marrow-stem kale, and the other a crop of celery. Different amounts of a general compound fertilizer had been applied.3. Generally, the findings confirmed those of the previous year's investigation. High ground waterlevel (approximately 18 in. below ground surface) had a deleterious effect upon the yield and quality of ryegrass as reflected by its protein content, compared with the medium and low water-levels (23 and 30 in. below ground surface, respectively).4. The high water-level also had a depressing effect upon the percentage of potassium and magnesium in the grass, but had no consistent effect upon calcium and phosphorus. The silica content rose steadily in all cases as the season advanced, as occurred in the previous year.5. Residual manuring effects were well marked in the crop following celery. The total yields of dry matter from the medium and low water-levels considerably exceeded those of similar plots following kale, and the protein contents were also appreciably higher. This demonstrates the advantages of a high soil nutrient status, under conditions of suitable water-levels, for a crop of fenland grass.6. A high water-level inhibited growth and quality, irrespective of the nutrient status of the soil.


Author(s):  
Anne Marieke Motelica-Wagenaar ◽  
Jos Beemster

Abstract. Soil subsidence is one of the major issues in the management area of the water authority Amstel, Gooi and Vecht, including emissions of greenhouse gases. This paper describes four different methods to calculate these emissions in agricultural peat meadows, based on (1) the mean lowest groundwater level, (2) the mean groundwater level, (3) the subsidence rates and (4) general numbers. The emissions were calculated in two polders (about 2600 ha peat meadow), these were comparable for all methods, ranging from 42 up to 50 kton CO2-eq yr−1 (based on data of 2015), which is about 14.5 up to 19 t CO2-eq ha−1 yr−1. Besides, the greenhouse gas emissions were compared for different policy scenario's in one polder subunit (283 ha): (1) standard policy (lowering surface water level at the same rate as soil subsidence taking place), (2) passive rewetting (surface water level fixation), (3) subsurface irrigation by submerged drains, and (4) a maximum surface water level decrease of 6 mm yr−1. Comparing the four policy scenario's in one polder subunit, greenhouse gas emissions were lowest in case of subsurface irrigation, decreasing greenhouse gas emissions by about 35 %–50 % in this polder compared to standard policy, meaning a decrease of about 5.5–9.3 t CO2-eq ha−1 yr−1. This represents a value of about 550–930 EUR ha−1 yr−1 (at a price of EUR 100 per ton CO2-eq). The scenario passive rewetting leads to a decrease of about 12 %–21 %, or 2–3 t CO2-eq ha−1 yr−1 compared to standard policy. The estimation of the decrease in GHG emissions depends on the assumptions made. In this study it was assumed that subsurface irrigation halves soil subsidence. The water board will use the described procedures to estimate greenhouse gas emissions in the future to support water level management in areas with peat soils.


Sign in / Sign up

Export Citation Format

Share Document