scholarly journals Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

2012 ◽  
pp. i-30 ◽  
Author(s):  
Erol Kalkan ◽  
Neal S. Kwong
2015 ◽  
Vol 31 (3) ◽  
pp. 1591-1612 ◽  
Author(s):  
Juan C. Reyes ◽  
Erol Kalkan

The California Building Code requires at least two ground motion components for the three-dimensional (3-D) response history analysis (RHA) of structures. For near-fault sites, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3-D computer models of single-story structures having symmetric and asymmetric plans subjected to a suite of bidirectional earthquake ground motions. The influence that the rotation angle has on several engineering demand parameters is investigated in linear and nonlinear domains to evaluate the use of the FN/FP directions, and the maximum direction (MD). The statistical evaluation suggests that RHAs should be conducted by rotating a set of records to the MD and FN/FP directions, and taking the maximum response values from these analyses as design values.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2015 ◽  
Vol 31 (3) ◽  
pp. 1691-1710 ◽  
Author(s):  
Lynne S. Burks ◽  
Reid B. Zimmerman ◽  
Jack W. Baker

Chapter 16 of ASCE 7 governs the selection of ground motions for analysis of new buildings and requires recordings that meet specified criteria. If a sufficient number of recordings cannot be found, it allows the use of “appropriate simulated ground motions,” but does not provide further guidance. This paper outlines a procedure for generating and selecting a set of “appropriate” hybrid broadband simulations and a comparable set of recordings. Both ground motion sets are used to analyze a building in Berkeley, California, and the predicted structural performance is compared. The structural behavior resulting from recordings and simulations is similar, and most discrepancies are explained by differences in directional properties such as orientation of the maximum spectral response. These results suggest that when simulations meet the criteria outlined for recordings in ASCE 7 and properties such as directionality are realistically represented, simulations provide useful results for structural analysis and design.


2017 ◽  
Vol 33 (2) ◽  
pp. 419-447 ◽  
Author(s):  
Reid B. Zimmerman ◽  
Jack W. Baker ◽  
John D. Hooper ◽  
Stephen Bono ◽  
Curt B. Haselton ◽  
...  

This paper represents the third part of a series of four publications on response history analysis for new buildings. Three real-building examples designed to a prior version of the building code are chosen, having a range of target spectrum characteristics, tectonic settings, and structural systems to test the new procedure and document its appropriate implementation. This paper describes the process of determining both MCER spectra and scenario spectra for all three examples. It explores selection of appropriate recorded ground motions and the procedure for scaling and spectrally matching to a maximum direction spectrum. Global results such as drift and treatment of unacceptable response, and local results such as force-and deformation-controlled acceptance criteria checks, are shown for each example. Practical guidance is given on implementing response history analysis for engineers employing the new Chapter 16.


2017 ◽  
Vol 33 (2) ◽  
pp. 373-395 ◽  
Author(s):  
Curt B. Haselton ◽  
Jack W. Baker ◽  
Jonathan P. Stewart ◽  
Andrew S. Whittaker ◽  
Nicolas Luco ◽  
...  

This manuscript, the first in a four-part series, describes the response history analysis approach developed for Chapter 16 of the ASCE/SEI 7 Standard and critical issues related to the specification of ground motions. Our approach provides new procedures for demonstrating adherence to collapse safety goals for new buildings (≤10% collapse probability at the MCER shaking level), creating nonlinear structural models, selecting and applying ground motions to the structural model, interpreting computed structural responses, and enforcing acceptance criteria to achieve the collapse safety goal. The ground motion provisions provide the option of using target spectra having more realistic spectral shapes than traditional uniform hazard spectra. Ground motions are developed using a two-stage procedure emphasizing spectral shape in their selection, followed by scaling or matching them to the target, with a modest penalty for matching. Horizontal component motions are applied to the structural model with random components to avoid bias associated with the maximum-component definition of the target spectrum.


2021 ◽  
Vol 309 ◽  
pp. 01136
Author(s):  
Siripuram Vamshisheela ◽  
Atulkumar Manchalwar

In this work the performance of U-Shaped Steel Isolator is evaluated for a 5-story building subjected to seismic and blast vibrations. The structure is analysed using SAP 2000 software and a nonlinear time history analysis is carried out. The effectiveness of using base isolation is studied by comparing the structural responses of the building with isolator and without isolator and noticeable difference was observed. As the U-Shaped isolator absorbs the energy in all directions, it effectively controls the structural responses. In this study, the building is subjected to four different seismic and four different blast induced ground motions. It was observed that by the use of supplementary energy device there is reduction in top story acceleration, base shear and less deformation in the structure. This study concludes that the use of isolator has been effective in minimizing structural responses.


2012 ◽  
Vol 12 (1) ◽  
pp. 1-10 ◽  
Author(s):  
K. G. Kostinakis ◽  
A. M. Athanatopoulou ◽  
I. E. Avramidis

Abstract. The present paper investigates the influence of the orientation of recorded horizontal ground motion components on the longitudinal reinforcement of R/C frame elements within the context of linear response history analysis. For this purpose, three single-story buildings are analyzed and designed for 13 recorded bi-directional ground motions applied along the horizontal structural axes. The analysis and design is performed for several orientations of the recording angle of the horizontal seismic components. For each orientation the longitudinal reinforcement at all critical cross sections is calculated using four methods of selecting the set of internal forces needed to compute the required reinforcement. The results show that the reinforcement calculated by three of the applied methods is significantly affected by the orientation of the recording angle of ground motion, while the fourth one leads to results which are independent of the orientation of the recording angle.


2012 ◽  
Vol 28 (3) ◽  
pp. 1223-1242 ◽  
Author(s):  
Juan C. Reyes ◽  
Erol Kalkan

U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.


Sign in / Sign up

Export Citation Format

Share Document