Location of abandoned wells by magnetic surveys; location maps and aeromagnetic contour maps

1985 ◽  
Author(s):  
F.C. Frischknecht ◽  
D. P. O'Brien ◽  
R. Grette ◽  
P.V. Raab
Keyword(s):  
2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
J. F. Hainfeld ◽  
J. S. Wall

Cost reduction and availability of specialized hardware for image processing have made it reasonable to purchase a stand-alone interactive work station for computer aided analysis of micrographs. Some features of such a system are: 1) Ease of selection of points of interest on the micrograph. A cursor can be quickly positioned and coordinates entered with a switch. 2) The image can be nondestructively zoomed to a higher magnification for closer examination and roaming (panning) can be done around the picture. 3) Contrast and brightness of the picture can be varied over a very large range by changing the display look-up tables. 4) Marking items of interest can be done by drawing circles, vectors or alphanumerics on an additional memory plane so that the picture data remains intact. 5) Color pictures can easily be produced. Since the human eye can detect many more colors than gray levels, often a color encoded micrograph reveals many features not readily apparent with a black and white display. Colors can be used to construct contour maps of objects of interest. 6) Publication quality prints can easily be produced by taking pictures with a standard camera of the T.V. monitor screen.


Author(s):  
J.P. Schroeter ◽  
M.A. Goldstein ◽  
J.P. Bretaudiere ◽  
L.H. Michael ◽  
R.L. Sass

We have recently established the existence of two structural states of the Z band lattice in cross section in cardiac as well as in skeletal muscle. The two structural states are related to the contractile state of the muscle. In skeletal muscle at rest, the Z band is in the small square (ss) lattice form, but tetanized muscle exhibits the basket weave (bw) form. In contrast, unstimu- lated cardiac muscle exhibits the bw form, but cardiac muscles exposed to EGTA show the ss form.We have used two-dimensional computer enhancement techniques on digitized electron micrographs to compare each lattice form as it appears in both cardiac and skeletal muscle. Both real space averaging and fourier filtering methods were used. Enhanced images were displayed as grey-scale projections, as contour maps, and in false color.There is only a slight difference between the lattices produced by the two different enhancement techniques. Thus the information presented in these images is not likely to be an artifact of the enhancement algorithm.


1960 ◽  
Vol 7 (7) ◽  
pp. 478
Author(s):  
PAUL THOMAS YOUNG
Keyword(s):  

1993 ◽  
Vol 39 (131) ◽  
pp. 10-14 ◽  
Author(s):  
J. F. Nye

AbstractThe pattern of horizontal strain rate in an ice sheet is discussed from a topological point of view. In a circularly symmetric ice sheet, the isotropic point for strain rate at its centre is degenerate and structurally unstable. On perturbation the degenerate point splits into two elementary isotropic points, each of which has the lemon pattern for the trajectories of principal strain rate. Contour maps of principal strain-rate values are presented which show the details of the splitting.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2452
Author(s):  
Tian Qiao ◽  
Hussein Hoteit ◽  
Marwan Fahs

Geological carbon storage is an effective method capable of reducing carbon dioxide (CO2) emissions at significant scales. Subsurface reservoirs with sealing caprocks can provide long-term containment for the injected fluid. Nevertheless, CO2 leakage is a major concern. The presence of abandoned wells penetrating the reservoir caprock may cause leakage flow-paths for CO2 to the overburden. Assessment of time-varying leaky wells is a need. In this paper, we propose a new semi-analytical approach based on pressure-transient analysis to model the behavior of CO2 leakage and corresponding pressure distribution within the storage site and the overburden. Current methods assume instantaneous leakage of CO2 occurring with injection, which is not realistic. In this work, we employ the superposition in time and space to solve the diffusivity equation in 2D radial flow to approximate the transient pressure in the reservoirs. Fluid and rock compressibilities are taken into consideration, which allow calculating the breakthrough time and the leakage rate of CO2 to the overburden accurately. We use numerical simulations to verify the proposed time-dependent semi-analytical solution. The results show good agreement in both pressure and leakage rates. Sensitivity analysis is then conducted to assess different CO2 leakage scenarios to the overburden. The developed semi-analytical solution provides a new simple and practical approach to assess the potential of CO2 leakage outside the storage site. This approach is an alternative to numerical methods when detailed simulations are not feasible. Furthermore, the proposed solution can also be used to verify numerical codes, which often exhibit numerical artifacts.


2021 ◽  
Vol 280 ◽  
pp. 111856
Author(s):  
Patricia M.B. Saint-Vincent ◽  
James I. Sams ◽  
Matthew D. Reeder ◽  
Mumbi Mundia-Howe ◽  
Garret A. Veloski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document