scholarly journals Precipitation, peak streamflow, and inundation in the Bynum Run and Winters Run watersheds in Harford County, Maryland

Author(s):  
Christopher W. Nealen ◽  
Edward J. Doheny
Keyword(s):  
2016 ◽  
Vol 17 (8) ◽  
pp. 2225-2244 ◽  
Author(s):  
Xing Chen ◽  
Mukesh Kumar ◽  
Rui Wang ◽  
Adam Winstral ◽  
Danny Marks

Abstract Previous studies have shown that gauge-observed daily streamflow peak times (DPTs) during spring snowmelt can exhibit distinct temporal shifts through the season. These shifts have been attributed to three processes: 1) melt flux translation through the snowpack or percolation, 2) surface and subsurface flow of melt from the base of snowpacks to streams, and 3) translation of water flux in the streams to stream gauging stations. The goal of this study is to evaluate and quantify how these processes affect observed DPTs variations at the Reynolds Mountain East (RME) research catchment in southwest Idaho, United States. To accomplish this goal, DPTs were simulated for the RME catchment over a period of 25 water years using a modified snowmelt model, iSnobal, and a hydrology model, the Penn State Integrated Hydrologic Model (PIHM). The influence of each controlling process was then evaluated by simulating the DPT with and without the process under consideration. Both intra- and interseasonal variability in DPTs were evaluated. Results indicate that the magnitude of DPTs is dominantly influenced by subsurface flow, whereas the temporal shifts within a season are primarily controlled by percolation through snow. In addition to the three processes previously identified in the literature, processes governing the snowpack ripening time are identified as additionally influencing DPT variability. Results also indicate that the relative dominance of each control varies through the melt season and between wet and dry years. The results could be used for supporting DPTs prediction efforts and for prioritization of observables for DPT determination.


Author(s):  
Taylor Livingston ◽  
Edward McBean ◽  
Mason Marchildon ◽  
Bahram Gharabaghi

Water management activities are currently predicated on the assumption of a stationary climate, despite the reality of climate change. Hydrologic impacts of climate change for three sub-watersheds north of Toronto for 2041-70 were investigated using the Precipitation-Runoff Modeling System to model six GCM projections from each of RCP 2.6, RCP 4.5, and RCP 8.5. Annual groundwater recharge, evapotranspiration, and the 7Q20 low streamflow statistic were projected to change from 1976-2005 conditions by -2.2% to +20.5%, +0.9% to +14.4%, and -25.5% to +9.8%, respectively. Seasonal shifts included an earlier date of peak streamflow for the majority of simulations and a +14.0% to +103.9% increase in winter recharge. A steady-state MODFLOW model was employed as a preliminary assessment into the effects of climate change on Source Water Protection outputs. The results of this research further the understanding of climate change impacts on human and ecological systems in southern Ontario.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yunlong Yao ◽  
Lei Wang ◽  
Xianguo Lv ◽  
Hongxian Yu ◽  
Guofu Li

Hydrology helps determine the character of wetlands; wetlands, in turn, regulate water flow, which influences regional hydrology. To understand these dynamics, we studied the Naoli basin where, from 1954 to 2005, intensive marshland cultivation took place, and the watershed’s wetland area declined from94.4×104 ha to17.8×104 ha. More than 80% of the wetland area loss was due to conversion to farmland, especially from 1976 to 1986. The processes of transforming wetlands to cultivated land in the whole Naoli basin and subbasins can be described using a first order exponential decay model. To quantify the effects of wetlands cultivation, we analyzed daily rainfall and streamflow data measured from 1955 to 2005 at two stations (Baoqing Station and Caizuizi Station). We defined a streamflow regulation index (SRI) and applied a Mann-Kendall-Sneyers test to further analyze the data. As the wetland area decreased, the peak streamflow at the Caizuizi station increased, and less precipitation generated heavier peak flows, as the runoff was faster than before. The SRI from 1959 to 2005 showed an increasing trend; the SRI rate of increase was 0.05/10a, demonstrating that the watershed’s regulation of streamflow regulation was declined as the wetlands disappeared.


Sign in / Sign up

Export Citation Format

Share Document