scholarly journals Low-cost embedded system for optical imaging of intrinsic signals

2019 ◽  
Vol 65 (6 Nov-Dec) ◽  
pp. 651
Author(s):  
E. Guevara ◽  
M. Miranda-Morales ◽  
K. Hernández-Vidales ◽  
M. Atzori ◽  
F.J. González

This paper describes the proof-of-concept evaluation of a low-cost imaging system for obtaining functional connectivity maps of in vivo murine models. This non-contact system is based on the Raspberry Pi 3 and its V2 camera and offers a method for obtaining resting-state images of brain activity without the use of extrinsic contrast agents. The system was fully characterized in terms of dark signal, linearity, sensor noise resolution and spatial frequency response. One mouse was observed in vivo and functional connectivity maps were obtained by combining resting-state analysis and optical intrinsic signals imaging. Intra-mouse variations in functional connectivity remain consistent across multiple imaging sessions. In principle, inexpensive optical imaging of intrinsic signals allows the study of the mechanisms underlying human brain disorders in well-controlled murine models.

NeuroImage ◽  
2014 ◽  
Vol 90 ◽  
pp. 235-245 ◽  
Author(s):  
Kevin C. Chan ◽  
Shu-Juan Fan ◽  
Russell W. Chan ◽  
Joe S. Cheng ◽  
Iris Y. Zhou ◽  
...  

2017 ◽  
Author(s):  
Ross D. Markello ◽  
R. Nathan Spreng ◽  
Wen-Ming Luh ◽  
Adam K. Anderson ◽  
Eve De Rosa

AbstractThe basal forebrain (BF) is poised to play an important neuromodulatory role in brain re-gions important to cognition due to its broad projections and complex neurochemistry. While significant in vivo work has been done to elaborate BF function in nonhuman rodents and primates, comparatively limited work has examined the in vivo function of the human BF. In the current study we used multi-echo resting state functional magnetic resonance imaging (rs-fMRI) from 100 young adults (18-34 years) to assess the potential segregation of human BF nuclei as well as their associated projections. Bottom-up clustering of voxel-wise functional connectivity maps yielded adjacent functional clusters within the BF that closely aligned with the distinct, hypothesized nuclei important to cognition: the nucleus basalis of Meynert (NBM) and the me-dial septum/diagonal band of Broca (MS/DB). Examining their separate functional connections, the NBM and MS/DB revealed distinct projection patterns, suggesting a conservation of nuclei-specific functional connectivity with homologous regions known to be anatomically innervated by the BF. Specifically, the NBM demonstrated coupling with a widespread cortical network as well as the amygdala, whereas the MS/DB revealed coupling with a more circumscribed net-work, including the orbitofrontal cortex and hippocampal complex. Collectively, these in vivo rs-fMRI data demonstrate that the human BF nuclei support functional networks distinct as-pects of resting-state functional networks, suggesting the human BF may be a neuromodulatory hub important for orchestrating network dynamics.HighlightsThe basal forebrain NBM and the MS/DB support two distinct functional networksFunctional networks closely overlap with known anatomical basal forebrainBasal forebrain networks are distinct from known resting-state functional networks


NeuroImage ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 2529-2538 ◽  
Author(s):  
Brian R. White ◽  
Steve M. Liao ◽  
Silvina L. Ferradal ◽  
Terrie E. Inder ◽  
Joseph P. Culver

2013 ◽  
Vol 4 (11) ◽  
pp. 2332 ◽  
Author(s):  
Edgar Guevara ◽  
Nataliya Sadekova ◽  
Hélène Girouard ◽  
Frédéric Lesage

NeuroImage ◽  
2003 ◽  
Vol 18 (4) ◽  
pp. 1010
Author(s):  
Shinichi Sasaki ◽  
Itaru Yazawa ◽  
Naohisa Miyakawa ◽  
Hiraku Mochida ◽  
Kenichi Shinomiya ◽  
...  

NeuroImage ◽  
2002 ◽  
Vol 17 (3) ◽  
pp. 1240-1255 ◽  
Author(s):  
Shinichi Sasaki ◽  
Itaru Yazawa ◽  
Naohisa Miyakawa ◽  
Hiraku Mochida ◽  
Kenichi Shinomiya ◽  
...  

2021 ◽  
Author(s):  
Atsushi Fujimoto ◽  
Catherine Elorette ◽  
J Megan Fredericks ◽  
Satoka H Fujimoto ◽  
Lazar Fleysher ◽  
...  

Background: Virally-mediated chemogenetic techniques hold the promise of circuit-specific neuromodulation for human brain disorders. Their protracted development in primates and issues related to the specificity of the actuator drugs has significantly slowed their implementation. Here we took a multi-disciplinary approach to assessing the translational appropriateness of a newly identified actuator drug, deschloroclozapine (DCZ). Methods: Resting-state functional MRI (rs-fMRI) data was acquired from seven rhesus macaques (6 males and 1 female) after administration of either vehicle, 0.1 or 0.3 mg/kg DCZ, the latter of which produce 80% and near 100% chemogenetic receptor occupancy, respectively. Seed-based comparative-connectome analysis and independent component analysis assessed dose dependent neural impact. Two subsets of subjects were tested on socio-emotional tasks (N = 4), and a probabilistic learning task (N = 3), assessing DCZ's impact on unconditioned and conditioned affective responses, respectively. Results: Neither vehicle nor 0.1 mg/kg DCZ changed overall functional connectivity, affective responses, or reaction times in the learning task. 0.3 mg/kg DCZ increased functional connectivity, particularly in frontal regions, and increased reaction times in the learning task. Notably, there was a positive correlation between changes in overall functional connectivity and reaction time. Conclusions: These experiments show the utility of rs-fMRI for in-vivo drug screening and benchmarking. We found that low dose DCZ does not alter brain function or affective behavior. However, higher doses of DCZ impacts frontal connectivity and is associated with deficits in task execution. Implementation of these methods will accelerate the development of chemogenetic in primates for research and therapeutic approaches.


Author(s):  
Carola Canella ◽  
Federico Rocchi ◽  
Shahryar Noei ◽  
Daniel Gutierrez-Barragan ◽  
Ludovico Coletta ◽  
...  

ABSTRACTfMRI-based measurements of functional connectivity are commonly interpreted as an index of anatomical coupling and direct interareal communication. However, causal testing of this hypothesis has been lacking. Here we combine neural silencing, resting-state fMRI and in vivo electrophysiology to causally probe how inactivation of a cortical region affects brain-wide functional coupling. We find that chronic silencing of the prefrontal cortex (PFC) via overexpression of a potassium channel paradoxically increases rsfMRI connectivity between the silenced area and its thalamo-cortical terminals. Acute chemogenetic silencing of the PFC reproduces analogous patterns of overconnectivity, an effect associated with over-synchronous fMRI coupling between polymodal thalamic regions and widespread cortical districts. Notably, multielectrode recordings revealed that chemogenetic inactivation of the PFC attenuates gamma activity and increases delta power in the silenced area, resulting in robustly increased delta band coherence between functionally overconnected regions. The observation of enhanced rsfMRI coupling between chemogenetically silenced areas challenges prevailing interpretations of functional connectivity as a monotonic index of direct axonal communication, and points at a critical contribution of slow rhythm generators to the establishment of brain-wide functional coupling.


Sign in / Sign up

Export Citation Format

Share Document