Elastic constants, electronic properties and thermoelectric response of LiAlX (X=C, Si, Ge, And Sn) half-Heusler

2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
ROZALE HABIB ◽  
M. Khetir ◽  
A. Maafa ◽  
F. Boukabrime ◽  
A. Bouabça ◽  
...  

Since they have become indispensable in various technological applications and a powerfulsource for generating energy in thermoelectric devices, Lithium-based alloys symbolize the topicof many experimental and theoretical reports. Hence, LiAlX(X = C, Si, Ge, Sn) materials representthe main research in this study. Different interesting properties such as the effect of pressure onthe band gap as well as the elastic parameters and the thermoelectric efficiency of these materialswere investigated using the full potential linearized augmented plane wave (FP-LAPW) method.LiAlX alloys were found to be semiconducting with indirect band gaps. When studying themechanical properties, we found that LiAlC alloy is stable against a wide range of pressurechanges (90 GPa), while the rest three systems preserve their mechanical stability in a moderaterespectively range of 40, 50 and 30 GPa, respectively. The semiconducting band gap for eachpossible transition have been calculated in a range of different pressures using both GGA andmBJ-GGA approximations. The results ended up revealing a decaying trend of the indirect gapalong Г-X direction with the increase of pressure. High values of the power factor were achievedand a large figure of merit (almost 0.7 for all systems) was calculated at 600K, which makesthese Li-based alloys very auspicious in the thermoelectric field applications.

2018 ◽  
Vol 32 (11) ◽  
pp. 1850129 ◽  
Author(s):  
Shahram Yalameha ◽  
Aminollah Vaez

In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0–1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.


2012 ◽  
Vol 23 (06) ◽  
pp. 1250043 ◽  
Author(s):  
BAKHTIAR UL HAQ ◽  
A. AFAQ ◽  
R. AHMED ◽  
S. NASEEM

A density functional study for structural and electronic properties of Zinc Oxide (ZnO), in wurtzite, rock salt and zinc-blende phases has been performed using full potential-linearized augmented plane wave/linearized augmented plane wave plus local ideal orbital (FP-LAPW/L(APW+lo) approach as realized in WIEN2k code. To approximate exchange correlation energy and corresponding potential, a special GGA parameterized by Wu–Cohen has been implemented. Our results of lattice constants, bulk moduli as well as for internal parameter with GGA-WC are found to be more reliable. This study reveals that value of internal parameter decreases with increasing volume whereas computed electronic band structure confirms the direct band gap behavior of ZnO in B4 and B3 phases while indirect band gap behavior in B1 phase. Moreover, two fold degeneracy at the maxima of valence band for B4 and B1 phases whereas three fold for B3 is observed. A detailed comparison with experimental and other first principles studies is also made.


2021 ◽  
Vol 35 (24) ◽  
Author(s):  
M. Shakil ◽  
Seemab Fatima Tufail ◽  
Muhammad Isa Khan ◽  
Saba Aziz ◽  
S. S. A. Gillani ◽  
...  

In this study, structural, electronic, magnetic, elastic and thermal properties of Co-based Quaternary Heusler alloys (QHAs) CoYTiZ ([Formula: see text], Ga, Si, Ge) have been investigated by Wien2k code. The calculations have been performed using full-potential linearized augmented plane wave (FP-LAPW) method. Generalized Gradient Approximation (GGA) method has been adopted. Structural properties have been explored for three different Wyckoff positions. From the geometry optimization calculations, it is concluded that all these alloys are stable in Type-III crystal structure. Moreover, magnetic phase optimization revealed ferro-magnetic (FM) phase as stable one. Results of electronic properties have shown metallic character for CoYTiAl, CoYTiGa, CoYTiGe while nearly half metal (HM) character for CoYTiSi. Magnetic moment obeys Slater Pauling rule (SP) for these alloys. To check out the mechanical stability, elastic properties have been investigated. Elastic parameters have shown the ductile nature of these alloys. The values for melting temperature ([Formula: see text] have confirmed the thermal stability of the studied alloys.


2002 ◽  
Vol 727 ◽  
Author(s):  
A. M. Mazzone

AbstractFull Potential Linearized Augmented Plane Wave calculations have been performed for epitaxial multilayers formed by the noble metals Ag and Cu with a thickness n up to 10 layers. The multilayers have a fcc lattice and are pure or compositionally modulated with a structure of the type Agn Cun or (AgCu)n. For n in the range 2,3 the density of states, evaluated at paramagnetic level, exhibits a sharp reduction of the bandwidth which is consistent with the reduced coordination of these structures. For n ≤ 5 the density of states in the central layers converges to the bulk value while the outer layers retain the narrow bandwidth found at n=2. Due to the absence of charge intermixing and hybridization, these features are shared by multilayers of all composition.


2002 ◽  
Vol 721 ◽  
Author(s):  
G. Y. Guo

AbstractLatest first-principles density functional theoretical calculations using the generalized gradient approximation and highly accurate all-eleectron full-potential linearized augmented plane wave method, show that bulk hcp Cr would be a paramagnet and that no ferromagnetic state could be stabilized over a wide range of volume [1]. To understand the recent observation of the weakly ferromagnetic state of Cr in hcp Cr/Ru (0001) superlattices [2], the same theoretical calculations have been carried out for the hcp Cr3/Ru7 (0001) and hcp Cr3/fcc Cu6 (111) superlattices. The Cr/Ru superlattice is found to be ferromagnetic with a small magnetic moment of ∼0.31μB/Cr while in contrast, Cr/Cu superlattice is found to be nonmagnetic.


1987 ◽  
Vol 2 (6) ◽  
pp. 768-774 ◽  
Author(s):  
Z. Iqbal ◽  
E. Leone ◽  
R. Chin ◽  
A. J. Signorelli ◽  
A. Bose ◽  
...  

The x-ray photoemission spectroscopie (XPS) data from different pelletized samples of the 90 K superconductor Ba2YCu3O7−δ (where δ∼0.2) have been obtained. The valence band spectrum (recorded at 300 and 170 K), which is composed of contributions from both the Cu 3d and O 2p levels, is compared with the full potential linearized augmented plane wave (FLAPW) calculated electronic density-of-states (DOS) reported by Massidda et al. and Mattheiss and Hamann. The experimental data indicate a relatively low DOS at the Fermi level. Detailed measurements of the core level Cu 2p, O 1s, Ba 3d, 4d, and Y 3d spectra of the superconducting and related standard materials, are presented. Data for the superconducting material were recorded in the freshly prepared form as well as after scraping in situ. The Cu 2p core level, satellite, and Auger spectra for the various samples were carefully examined in order to assess the possibility of the presence of Cu3+ ions in Ba2YCu3O7-δ. It is observed that surface reaction in air to form carbonates and hydroxides occurs readily in the superconducting material.


2021 ◽  
pp. 2150039
Author(s):  
EJAZ AHMAD KHERA ◽  
HAFEEZ ULLAH ◽  
MUHAMMAD IMRAN ◽  
HASSAN ALGADI ◽  
FAYYAZ HUSSAIN ◽  
...  

Resistive switching (RS) performances had prodigious attention due to their auspicious potential for data storage. Oxide-based devices with metal insulator metal (MIM) structure are more valuable for RS applications. In this study, we have studied the effect of divalent (nickel) as well as trivalent (aluminum) dopant without and with oxygen vacancy (V[Formula: see text] in hafnia (HfO[Formula: see text]-based resistive random-access memory (RRAM) devices. All calculations are carried out within the full potential linearized augmented plane-wave (FP-LAPW) method based on the WIEN2k code by using generalized gradient approximation (GGA) and generalized gradient approximation with U Hubbard parameters (GGA+U) approach. The studies of the band structure, density of states and charge density reveal that HfNiO2+Vo are more appropriate dopant to enhance the conductivity for RRAM devices.


Sign in / Sign up

Export Citation Format

Share Document