scholarly journals Variation of Lichen Diversity along an Elevation Gradient in the Hantana Mountain Range in Sri Lanka

Author(s):  
W.A.M.T. Weerathunga ◽  
A.M.G.K. Athappaththu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahid Afzal ◽  
Humira Nesar ◽  
Zarrin Imran ◽  
Wasim Ahmad

AbstractDespite enormous diversity, abundance and their role in ecosystem processes, little is known about how community structures of soil-inhabiting nematodes differ across elevation gradient. For this, soil nematode communities were investigated along an elevation gradient of 1000–2500 masl across a temperate vegetation in Banihal-Pass of Pir-Panjal mountain range. We aimed to determine how the elevation gradient affect the nematode community structure, diversity and contribution to belowground carbon assimilation in the form of metabolic footprint. Our results showed that total nematode abundance and the abundance of different trophic groups (fungivores, herbivores and omnivores) declined with the increase of elevation. Shannon index, generic richness and evenness index indicated that nematode communities were more diverse at lower elevations and declined significantly with increase in elevation. Nematode community showed a pattern of decline in overall metabolic footprint with the increase of elevation. Nematode abundance and diversity proved to be more sensitive to elevation induced changes as more abundant and diverse nematode assemblage are supported at lower elevations. Overall it appears nematode abundance, diversity and contribution to belowground carbon cycling is stronger at lower elevations and gradually keep declining towards higher elevations under temperate vegetation cover in Banihal-pass of Pir-Panjal mountain range.


Phytotaxa ◽  
2016 ◽  
Vol 280 (2) ◽  
pp. 152 ◽  
Author(s):  
GOTHAMIE WEERAKOON ◽  
ANDRÉ APTROOT

The lichen diversity of ten forest sites representing different geographical regions in Sri Lanka was investigated. In total, c. 1500 specimens of c. 400 species were recorded of the evaluated groups (all except the Graphidaceae and a few foliose groups). The following new species are described: Astrothelium conjugatum, Heterodermia fragmentata, Lecanactis minutissima, Megalotremis cylindrica, Porina microtriseptata, Porina monilisidiata, Psoroglaena spinosa, Pyrenula multicolorata, and Schistophoron muriforme. A further 64 species are reported for the first time from Sri Lanka, including 30 new records for the Indian subcontinent and eight new to Asia.


2021 ◽  
pp. 443-455
Author(s):  
B. M. R. L. Basnayake ◽  
D. Achini M. De Silva ◽  
S. K. Gunatiliake ◽  
R. H. N. Rajapaksha M. Sandamith ◽  
I. Wickramarathna

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1175
Author(s):  
Martin Häusser ◽  
Sonja Szymczak ◽  
Isabel Knerr ◽  
Jörg Bendix ◽  
Emilie Garel ◽  
...  

Stem radial variations of Corsican Black pine (Pinus nigra Arnold subsp. laricio Maire) and Maritime pine (Pinus pinaster Aiton) were monitored to quantify the impact of two meteorologically contrasting consecutive years. On the French island of Corsica, in the western Mediterranean basin, the year 2017 was extremely dry, while 2018 was exceptionally wet. We attached electric band dendrometers to 36 pines along an east–west transect, spanning the central mountain range, and set up automated weather stations at all five sites, ranging from 10 m asl to 1600 m asl. Stem radial variations (SRV) were separated into irreversible growth (GRO) and tree water deficit (TWD) periods. During the drought of 2017, the most severe tree water deficits occurred in the western part of the island, whereas trees at higher elevations were more affected than at lower elevations. A prolonged decrease of SRV, even close to the tree line, suggests bimodal growth and reveals high plasticity of growth patterns in both Corsican pines. Stem radial variations correlated significantly with precipitation and temperature. The positive correlations of GRO with precipitation and the negative correlations of TWD with temperature imply that high evapotranspiration led to the intense period of TWD in 2017. A novel approach was used to further investigate the growth/climate relationship by including synoptic-scale pressure situations. This revealed that an elevation gradient in GRO per weather pattern was only present in the wet year and that even rarely occurring weather patterns can have a substantial impact on tree growth. This novel approach provides a more comprehensive insight into meteorological drivers of tree growth patterns by incorporating different scales of the climatic system.


2019 ◽  
Author(s):  
W.A.M.T. Weerathunga ◽  
A.M.G.K. Athapaththu ◽  
L.D. Amarasinghe

AbstractArthropods contribute significantly to biodiversity and vegetation provides a habitat and resources for them to survive, exist and propagate. We report a preliminary investigation on the extent to which arthropod diversity is dependent upon vegetation diversity across different ecosystems in a humid tropical climate. We determined the diversity of arthropods in four ecosystems closely-located ecosystems with different vegetation. Vegetation surrounding an aquatic environment (AQ), a broad-leaved wet, evergreen forest ecosystem (BL), a Pinus caribaea monoculture plantation (PN) and a Pinus plantation artificially enriched with indigenous broad-leaved tree species (PNEN) located in the Hanthana mountain range in Central Sri Lanka were selected. In each environment, arthropods were sampled in three randomly-selected sites (5 m x 5 m) using four sampling methods. Collected arthropods were identified upto the highest possible taxa using standard identification keys. Simultaneously, vegetation diversity was determined via a plant census. Arthropod and vegetation diversities were computed separately for each site using Shannon-Wiener Index (H).Within the 300 m2 area of observation plots, arthropod individuals belonging to 68 species and 43 families were found. AQ had the greatest arthropod diversity (H=2.642), dominated by Olios spp. followed by BL (H=2.444), dominated by three arthropods, namely, a tettigonid species, Oxytate spp. and Psechrus spp. PN had the next highest arthropod diversity (H=1.411), dominated by Dicaldispa spp. The lowest arthropod diversity was found at PNEN (H=1.3500), dominated by an ant species. Contrastingly, PNEN had the highest plant diversity (H=2.614) and PN the lowest (H=0.879). AQ (H=1.810) and BL (H=1.871) had intermediate values.In a regression involving data from AQ, BL and PN, arthropod diversity was linearly dependent on plant diversity (R2=0.423) whereas it was not so when PNEN was also included (R2=0.008). This finding supports the hypothesis that while higher plant diversity contributes to greater arthropod diversity in ecosystems where human intervention is minimal, artificial enrichment of plant diversity does not necessarily increase arthropod diversity in the short-to medium-term. Further investigations are needed to substantiate these preliminary findings and validate the above hypothesis.


Zootaxa ◽  
2018 ◽  
Vol 4461 (4) ◽  
pp. 519 ◽  
Author(s):  
GAYANI SENEVIRATHNE ◽  
V.A.M.P.K. SAMARAWICKRAMA ◽  
NAYANA WIJAYATHILAKA ◽  
KELUM MANAMENDRA-ARACHCHI ◽  
GAYAN BOWATTE ◽  
...  

The monotypic genus Lankanectes, considered an evolutionary long branch with India’s Nyctibatrachus as its sister lineage, is represented by L. corrugatus, a species widely distributed within the wet zone of Sri Lanka up to 1500 m asl, where it inhabits a variety of lotic and lentic habitats. Here, following an integrative taxonomic approach using DNA-based phylogenies, morphology, morphometry, and ecological niche models, we describe a new species—Lankanectes pera sp. nov. The new species is distinguished from its sister species mainly by its tuberculated throat and absence of dark patches on venter, throat, manus and pes. The uncorrected genetic distances between the two Lankanectes species for a fragment of the non-coding mitochondrial 16S rRNA gene is 3.5–3.7%. The new species has a very restricted climatic distribution with a total predicted area of only 360 km2 (vs. 14,120 km2 for L. corrugatus). Unlike L. corrugatus, which prefers muddy substrates and marshy areas, the new species is observed inhabiting only pristine streams flowing through canopy covered montane forests in the highest reaches of the Knuckles Mountain range. The specialized new species will need immediate conservation attention due to its restricted distribution (montane isolate), specialized habit of inhabiting clear mountain streams, and small population size. 


2019 ◽  
Vol 30 (4) ◽  
pp. 495-505 ◽  
Author(s):  
JOSÉ LUIS TELLERÍA

SummaryMediterranean mountains are biodiversity hotspots where northern species occur surrounded by drier and warmer lowlands. In this context, global warming is pushing these species to higher elevations. This paper assesses whether forest birds have experienced a shift upwards over the elevation gradient in the last 35 years in the Guadarrama Mountains (600–2,400 m asl; central Spain). Alternatively, the paper tests whether the reported shifts are related to changes in forest structure resulting from rural abandonment and/or forest management. To do this, sampling carried out from 1976 to 1980 along the elevation gradient was repeated in 2014–2015. In addition, the habitat preferences of birds were used to test if the elevation shifts were related to changes in forest structure. Results show that the mean range position of birds associated with tree cover shifted downwards, a trend supported by an increase in tree-dependent birds at mid-elevations. These trends suggest that an increase in tree cover has buffered the altitudinal shifts of forest birds predicted by climate warming. Results also suggest that proper forest management may improve the resilience of forest bird communities to the pervasive effects of climate warming.


2010 ◽  
Vol 138 (7) ◽  
pp. 2780-2802 ◽  
Author(s):  
Jian-Hua Qian ◽  
Lareef Zubair

Abstract The performance of an ensemble-based dynamical regional climate downscaling system is evaluated over southern Asia in a northeasterly monsoon season for different choices in grid spacing and domain size. A seven-member ensemble of the ECHAM4.5 global climate model at a resolution of about 300-km grid size was used to drive the RegCM3 regional climate model with grid sizes of 100, 50, 25, and 20 km, respectively. The performance is reported in detail over Sri Lanka. Two sets of regional model runs were undertaken to assess the effect of grid spacing and model domain size on the downscaling performance. The RegCM3 simulation with 100-km grid size significantly underestimates the height of the central mountain range in Sri Lanka, in a manner that is too coarse to capture orographic influences on the rainfall. However, the RegCM3 simulations with grid sizes from 20 to 50 km capture mesoscale features that arise from uplift condensation on the windward side of the monsoon winds due to the topography. These simulations also capture the orographic influences on the month-to-month rainfall over Sri Lanka that were absent in the ECHAM4.5. While the “small domain” runs [where only the forcings for the region immediately around Sri Lanka (4°–11°N, 76°–85°E) are used] are computationally more efficient, the results are overly controlled by the lateral boundary driving of the ECHAM4.5 so they inherit large uncertainty from the seven ECHAM4.5 realizations used for the RegCM3 ensemble runs. The “large domain” simulation used a domain comprising both land and ocean (approximately 4°S–22°N, 65°–96°E). The large-domain group of simulations produced reasonable spatial distribution of precipitation over the region. Moreover, the ensemble spread was considerably reduced in the large-domain high-resolution runs. Therefore, fine enough grid resolution (25 km or less) and sufficiently large domain size are both needed to simulate the essential features of precipitation in this tropical and monsoonal region.


Sign in / Sign up

Export Citation Format

Share Document