scholarly journals Paleoenvironmental Reconstructions using Organic Source Indicators: A Summary of Examples from Sri Lanka

2019 ◽  
Vol 8 (2) ◽  
Author(s):  
A.S. Ratnayake

The qualitative and quantitative analysis of sedimentary organic matter (i.e., the residue of past biota) provides integrated histories of marine and continental past life and paleoenvironmental /paleoclimatic changes. Organic geochemical investigations are possible by combining (i) bulk properties such as elemental compositions, stable isotope ratios, and Rock-Eval pyrolysis data, and (ii) biomarker molecular compositions such as n-alkanes, sterol, and polycyclic aromatic hydrocarbons compositions. The analytical approaches described in this overview illustrate the published examples of lacustrine and marine organic geochemical studies in Sri Lanka. In summary, the Jurassic Andigama and Tabbowa Basins provide different sources of organic matter, followed by availability of nutrient for algal growth and the amount of land runoff to the basins. Rock-Eval analysis of the Cretaceous to Paleogene sedimentary rocks in the offshore Mannar Basin reveal the presence of gas-prone land-plant organic matter mainly and minor oil-prone algal organic matter. The amounts and types of organic matter variations in Bolgoda Lake sediments indicate changes in Holocene sea-level, coastal geomorphology, and continental climates during the last 7,000 years. In future directions, applications of novel organic geochemical proxies and understanding of original biologically synthesized materials in tropics would improve interpretations of paleoenvironmental changes. Besides, local and regional paleoclimatic proxy and model studies would refine future paleoenvironmental reconstructions in Sri Lanka.

2021 ◽  
Vol 17 (43) ◽  
pp. 194
Author(s):  
Adekeye Olabisi Adeleye ◽  
Ogundipe Olumide ◽  
Adeoye James Adejimi ◽  
Adeyilola Adedoyin ◽  
Samuel Olukayode ◽  
...  

Upper Cretaceous shales partially exposed in the northern fringes of the Dahomey Basin are well developed in the subsurface in Southwestern part of the basin where Agbau-1 well is sited. These shales were evaluated in respect to their paleoenvironments and potentials for hydrocarbon using foraminiferal assemblages, biomarkers and Rock Eval pyrolysis studies. The dominance of benthonic foraminifera species suggests a shallow marine environment and high percentage of calcareous to arenaceous benthic www.eujournal.org 195foraminifera indicate high water salinity and hypersline environment. Dysoxic oxygen condition is also prevalent probably because most of the benthic foraminifera recovered are epifauna that live in a reduced oxygen condition. 1.90 wt%, 244 mgHC/gTOC and 429℃ average values of total organic carbon, hydrogen index and Tmax reveal that the Upper Cretaceous shales have relatively fair to good organic matter, predominantly Type II-III kerogen and currently immature. Though three is a trend of an increase in maturity down the hole. All the steranes have uniform distributions (C27>C28>C29), suggesting a relatively higher input from the marine red algae and a low level of land plant contribution to the source organic matter. Pristane/phytane ratios and C29/C27 steranes confirmed the organic matter type to be a Type II/III and anoxic source rock depositional condition as well as a reducing diagenetic system in the sediment water column. The Upper Cretaceous shales in Dahomey Basin can be targeted for exploration as an unconventional petroleum resource.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


2018 ◽  
Vol 115 (17) ◽  
pp. E3895-E3904 ◽  
Author(s):  
Donald E. Canfield ◽  
Shuichang Zhang ◽  
Huajian Wang ◽  
Xiaomei Wang ◽  
Wenzhi Zhao ◽  
...  

We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.


2021 ◽  
pp. SP514-2021-2
Author(s):  
Weimu Xu ◽  
Johan W. H. Weijers ◽  
Micha Ruhl ◽  
Erdem F. Idiz ◽  
Hugh C. Jenkyns ◽  
...  

AbstractThe organic-rich upper Lower Jurassic Da'anzhai Member (Ziliujing Formation) of the Sichuan Basin, China is the first stratigraphically well-constrained lacustrine succession associated with the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The formation and/or expansion of the Sichuan mega-lake, likely one of the most extensive fresh-water systems to have existed on the planet, is marked by large-scale lacustrine organic productivity and carbon burial during the T-OAE, possibly due to intensified hydrological cycling and nutrient supply. New molecular biomarker and organic petrographical analyses, combined with bulk organic and inorganic geochemical and palynological data, are presented here, providing insight into aquatic productivity, land-plant biodiversity, and terrestrial ecosystem evolution in continental interiors during the T-OAE. We show that lacustrine algal growth during the T-OAE accounted for a significant organic-matter flux to the lakebed in the palaeo-Sichuan mega-lake. Lacustrine water-column stratification during the T-OAE facilitated the formation of dysoxic-anoxic conditions at the lake bottom, favouring organic-matter preservation and carbon sequestration into organic-rich black shales in the Sichuan Basin. We attribute the palaeo-Sichuan mega-lake expansion to enhanced hydrological cycling in a more vigorous monsoonal climate in the hinterland during the T-OAE greenhouse.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5433544


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3059
Author(s):  
Diogo Folhas ◽  
Armando C. Duarte ◽  
Martin Pilote ◽  
Warwick F. Vincent ◽  
Pedro Freitas ◽  
...  

Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems.


Sign in / Sign up

Export Citation Format

Share Document