scholarly journals Chemical Component and Fatty acid Distribution of Delonix regia and Peltophorum pterocarpum Seed Oils

2010 ◽  
Vol 16 (6) ◽  
pp. 565-570 ◽  
Author(s):  
Adewale ADEWUYI ◽  
Rotimi A. ODERINDE ◽  
B.V.S.K. RAO ◽  
R.B.N. PRASAD ◽  
B. ANJANEYULU
1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.


1962 ◽  
Vol 40 (11) ◽  
pp. 2078-2082 ◽  
Author(s):  
C. Y. Hopkins ◽  
Mary J. Chisholm

Seed oils were hydrolyzed under mild conditions and the major conjugated fatty acid of each oil was isolated and identified. In two families, species which were closely related botanically contained different but isomeric acids. Thus, in the Bignoniaceae, Jacaranda chelonia had cis trans,cis-8,10,12-octadecatrienoic acid as a major acid while Catalpa speciosa had trans,trans,cis-9,11,13-octadecatrienoic acid. In the Cucurbitaceae, Momordica charantia had the ordinary cis,trans,trans-9,11,13-octadecatrienoic (α-eleostearic) acid while M. balsamina had cis,trans,cis-9,11,13-octadecatrienoic (punicic) acid. M. balsamina is a new and convenient source of punicic acid. α-Eleostearic acid was identified as a major acid in examples of Valerianaceae and Rosaceae. Further proof was obtained that the fatty acid of Calendula officinalis (Compositae) is trans,trans,cis-8,10,12-octadecatrienoic acid.


2017 ◽  
Vol 94 (7) ◽  
pp. 905-912 ◽  
Author(s):  
Yanling Wang ◽  
Yuge Niu ◽  
Xin Zhao ◽  
Bangquan Wang ◽  
Qianqian Jiang ◽  
...  
Keyword(s):  

1973 ◽  
Vol 30 (2) ◽  
pp. 181-185 ◽  
Author(s):  
John W. Farrington ◽  
James G. Quinn ◽  
Wayne R. Davis

Samples of the infaunal invertebrates Nephtys incisa and Yoldia limatula from Narragansett Bay, Rhode Island, have been analyzed for their fatty acid distribution. Based on total fatty acids, Yoldia contains 9–16% of an acid tentatively identified as 22:2. The ratios of 18:1/18:0 and 18:1/20:1 fatty acids of Nephtys from a polluted station in the bay are lower than the corresponding ratios for animals from relatively clean areas.


1982 ◽  
Vol 84 (7) ◽  
pp. 278-280 ◽  
Author(s):  
R. C. Badami ◽  
K. R. Alagawadi ◽  
S. C. Shivamurthy

Sign in / Sign up

Export Citation Format

Share Document