scholarly journals Effects of Filtrating and Washing Operation in the Rose-Gottlieb Method (Internal Method) on the Determination of Fat Content in Whole Milk Powder.

1967 ◽  
Vol 14 (3) ◽  
pp. 118-120
Author(s):  
MITSUGU MUROFUSHI ◽  
TAKEO ORUI
2003 ◽  
Vol 68 (1) ◽  
pp. 210-216 ◽  
Author(s):  
A.B. Koc ◽  
P.H. Heinemann ◽  
G.R. Ziegler

2016 ◽  
Vol 99 (1) ◽  
pp. 198-203
Author(s):  
Wu Bolong ◽  
Zhang Fengxia ◽  
Ma Xiaoning ◽  
Zhou Fengjuan ◽  
Sharon L Brunelle

Abstract A potentiometric method for determination of chloride was validated against AOAC Standard Method Performance Requirement (SMPR®) 2014.015. Ten AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) matrixes, including National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1849a, were tested in duplicate on 6 independent days. The repeatability (RSDr) ranged from 0.43 to 1.34%, and the intermediate reproducibility (RSDiR) ranged from 0.80 to 3.04%. All results for NIST SRM 1849a were within the range of the certified concentration (701 ± 17 mg/100 g). Recovery was demonstrated with two overspike levels, 50 and 100%, in the 10 SPIFAN matrixes. Samples were tested in duplicate on 3 different days, and all results were within the SMPR requirement of 95 to 105%. The LOQs of the method for powdered products and ready-to-feed or reconstituted products were 20 mg/100 g and 2.2 mg/100 mL, respectively. A wide analytical range from the LOQ to 99.5% chlorine content can be reached with an appropriate dilution factor, but in practice, the upper analytical value observed in routine matrix testing was approximately 1080 mg/100 g in skim milk powder. This is a rapid, simple, and reliable chlorine-testing method applicable to infant formula, adult nutritionals, and ingredients used in these dairy-based products, such as skim milk powder, desalted whey powder, whey protein powder, and whole milk powder.


1946 ◽  
Vol 14 (3) ◽  
pp. 378-399 ◽  
Author(s):  
J. D. Findlay ◽  
Constance Higginbottom ◽  
J. A. B. Smith

1. Storage tests on spray-dried full-cream milk powders prepared from milk preheated at 160,170,180, 190 and 200° F. for approximately 20 sec. and dried by the Krause process have been carried out at 47, 37 and 15° C. or room temperature. The storage tests were carried out independently at two different research stations. At the Hannah Institute the powders were packed in plain tin-plate containers as received from the factory. At Cambridge grease-free plain tin-plate and lacquered tin-plate containers were used. Deterioration was followed at both stations by a tasting panel and by determination of the amount of oxygen absorbed by the powder and of the accumulation of peroxide in the fat.2. When fresh the powder pre-heated at 180° F. had the best flavour, followed in order of preference by those pre-heated at 190 and 200° F., which had a definite but quite pleasant ‘boiled’ or ‘cooked’ flavour, and by those pre-heated at 160 and 170° F. which had an incipient tallowy flavour, but were nevertheless still acceptable. The 200 and 190° F. powders gave a strong reaction for volatile sulphur, the 180° F. powder a much weaker but quite definite reaction, and the 170 and 160° F. powders a negative reaction. The copper content of the 180° F. powder which, with the 170° F. sample, was the highest of the group, may have been partly responsible for the weakness of the reaction for volatile sulphur given by this sample. The solubility of the 180, 190 and 200° F. powders was not adversely affected by the high pre-heating temperatures, and the moisture contents of all the powders were sufficiently low to prevent any obvious loss of solubility, which remained very good indeed throughout the storage tests.


1946 ◽  
Vol 14 (3) ◽  
pp. 340-353 ◽  
Author(s):  
G. Loftus Hills ◽  
C. C. Thiel

The ferric thiocyanate method of estimating peroxide in fats has been modified to give greater sensitivity and greater stability of the reagent. As the 96% acetone used by Chapman & McFarlane (3)and Lips et al.(4) only dissolves about 0.5% butterfat, the sensitivity of the test was increased by using, as solvent, the mixture of benzene and methanol used by Bolland et al. (6) in the determination of rubber peroxides, which dissolves at least 10% butterfat. Instead of using a prepared reagent which gradually deteriorates, the ferrous salt and thiocyanate are added in aqueous solution during the test, and, moreover, ferrous salts appear to be more stable in this solvent than in acetone. The modified method is sufficiently sensitive to measure the peroxide value of the fat of freshly drawn milk and has been applied to the study of the first stages of oxidation in milk, butter and whole-milk powder.


1998 ◽  
Vol 97 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Paul R. Rennie ◽  
X.D. Chen ◽  
Antony R. Mackereth

1945 ◽  
Vol 23f (6) ◽  
pp. 327-333 ◽  
Author(s):  
Jesse A. Pearce

Sorption of carbon dioxide by milk powder in a closed system at 35 °C. and at approximately 74 cm. of mercury was observed to be greater than 0.4 cc. per gm. after 150 hr., while only 0.012 cc. of nitrogen was absorbed per gm. after 70 hr. The initial sorption of carbon dioxide varied with time according to the equation:[Formula: see text]where s is 100 times the amount sorbed in cc. per gm. at any time, t (min.), and k and m are constants peculiar to the system under investigation. The logarithmic form of this equation was used. Powders with 26, 28, and 30% fat did not differ in behaviour, but sorption curves for powders with only 1% fat had lower [Formula: see text] values and lower [Formula: see text] values than the curves for the high fat levels. Powders with 1% fat sorbed carbon dioxide in an identical manner when exposed to either 100% carbon dioxide or a mixture of 20% carbon dioxide and 80% nitrogen. For whole milk powder, dilution to 80% nitrogen content was effective in reducing the initial sorption rate of carbon dioxide. Great variation was observed in the sorption behaviour of powders from different plants and in powders produced at different time intervals in the same plant. Temperature differences within the range 25° to 40 °C. had no effect on sorption. Palatability and [Formula: see text] correlated to the extent of r =.61.


Sign in / Sign up

Export Citation Format

Share Document