Adsorption, Kinetics and Equilibrium Studies on Removal of Catechol and Resorcinol from Aqueous Solution Using Low-Cost Activated Carbon Prepared from Sunflower (Helianthus annuus) Seed Hull Residues

2018 ◽  
Vol 229 (11) ◽  
Author(s):  
Ephraim Vunain ◽  
Dégninou Houndedjihou ◽  
Maurice Monjerezi ◽  
Adolp Anga Muleja ◽  
BarthélémyTomkouani Kodom
Author(s):  
Amos Kamau ◽  
George Thiong’o ◽  
Beatrice Kakoi

Heavy metals have continued to be of great concern in research as major pollutants of water. Adsorption using low cost adsorbent is a low cost method of the removal heavy metal ions from aqueous solution. In this study activated carbon derived from macadamia intergrifolia nutshell powder was considered as an alternative low cost adsorbent for the removal of Cd(II) ions from aqueous solution. Various physicochemical parameters which included sorbent mass, and initial metal ions concentration isotherms using sorption models were determined. Results from the experiment indicated the optimum values for sorbent mass as 0.3 grams, and initial metal ions concentration as 8mg/l. Adsorption isotherms were found to fit well in Langmuir model (R2=0.9935), Javanovic model (R2 =0.9857) and Freundlich model (R2=0.9911). Additionally, for Langmuir model the value of separation factor (KL) was in the range of 0 to 1 indicating a favorable reaction. For Jovanovic model adsorption energy was found to be 1.00334 l/mg thus an indication of binding vibrations during Cd(II) ions adsorption.  FTIR spectrum revealed that the presence of O-H at νmax 3389 cm-1, COO- at νmax 2367 cm-1, C=0 at νmax 1593 cm-1,  C-O at νmax 1344 cm-1, P-O at νmax 1206 cm-1 and POO-H at νmax 1110cm-1 functional group in activated carbon enhanced Cd(II) ions removal.  The study revealed that activated carbon derived from macadamia intergrifolia nutshell can be used to remove Cd(II) ions from water. 


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


2020 ◽  
Vol 9 (1) ◽  
pp. 318-327

Adsorption is a widely used technique for wastewater remediation. The process is effective and economical for the removal of various pollutants from wastewater, including dyes. Moreover, Besides commercial activated carbon, different low-cost materials such as agricultural and industrial wastes are now used as adsorbents. The present review focused on the removal of a teratogenic and carcinogenic dye, orange G (OG) via adsorption using several adsorbents, together with the experimental conditions and their adsorption capacities. Based on the information compiled, various adsorbents have shown promising potential for OG removal.


2014 ◽  
Vol 875-877 ◽  
pp. 196-201 ◽  
Author(s):  
Mohd Faisal Taha ◽  
Ahmad S. Rosman ◽  
Maizatul S. Shaharun

The potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Pb (II) ion from aqueous solution was investigated. Rice husk-based activated carbon was preparedviachemical activation process using NaOH followed by the carbonization process at 500°C. Morphological analysis was conducted using field-emission scanning electron microscope /energy dispersive X-ray (FESEM/EDX) on three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon. These three samples were also analyzed for their C, H, N, O and Si contents using CHN elemental analyzer and FESEM/EDX. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2adsorption. The adsorption studies using rice husk-based activated carbon as an adsorbent to remove Pb (II) ion from aqueous solution were carried out at a fixed initial concentration of Pb (II) ion (150 ppm) with varying adsorbent dose as a function of contact time at room temperature. The concentration of Pb (II) ion was determined by atomic absorption spectrophotometer (AAS). The removal of Pb (II) ion from aqueous solution increased from 35 % to 82 % when the amount of rice husk-based activated carbon was increased from 0.05 g to 0.30 g. The equilibrium data obtained from adsorption studies was found to fit both Langmuir and Freundlich adsorption isotherms.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document