Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants

Author(s):  
Nelson Heriberto Almeida Camargo ◽  
Enori Gemelli ◽  
Laís Schmitz Passoni ◽  
Priscila Ferraz Franczak ◽  
Pricyla Corrêa
2020 ◽  
Vol 61 (6) ◽  
pp. 177-187
Author(s):  
Till Kämmerer ◽  
Tony Lesmeister ◽  
Victor Palarie ◽  
Eik Schiegnitz ◽  
Andrea Schröter ◽  
...  

Introduction: We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. Materials and Methods: A total of 36 cylindrical press-fit implants with two different surfaces (CaP, n = 18; SA, n = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). Results: After 2 weeks, CaP implants showed no significant increase in cBIC and aBIC compared to SA (cBIC: mean 38 ± 5 vs. 16 ± 11%; aBIC: mean 21 ± 1 vs. 6 ± 9%). Two CaP implants failed to achieve osseointegration. After 4 weeks, no statistical difference between CaP and SA was seen for cBIC (mean 54 ± 15 vs. 43 ± 16%) and aBIC (mean 43 ± 28 vs. 32 ± 6). However, we excluded two implants in each group due to failure of osseointegration. After 8 weeks, we observed no significant intergroup differences (cBIC: 18 ± 9 vs. 18 ± 20%; aBIC: 13 ± 8 vs. 16 ± 9%). Again, three CaP implants and two SA implants had to be excluded due to failure of osseointegration. Conclusion: Due to multiple implant losses, we cannot recommend the oral mandibular minipig in vivo model for future endosseous implant research. Considering the higher rate of osseointegration failure, CaP coatings may provide an alternative to common subtractive implant surface modifications in the early phase post-insertion.


2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


2020 ◽  
Vol 13 (4) ◽  
pp. 329-333
Author(s):  
Maurice Y. Mommaerts ◽  
Paul R. Depauw ◽  
Erik Nout

Study Design: Inlay cranioplasties following partial craniectomy in tumor or trauma cases and onlay cranioplasties for reconstructions of residual developmental skull anomalies are frequently performed using CAD-CAM techniques. Objective: In this case series, we present a novel cranial implant design, being a combination of 3D-printed titanium grade 23 and calcium phosphate paste (CeTi). Methods: The titanium patient-specific implant, manufactured using selective laser melting, has a latticed border with interconnected micropores. The cranioplasty is miniscrew fixed and its border zone subsequently partially filled with calcium phosphate paste to promote osteoinduction and osteoconduction. From April 2017 to April 2019, 8 patients have been treated with such a CeTi implant. The inlay cranioplasties were each time revision surgeries of complicated cases. Results: All implants were successful after a limited follow-up time (range 18-42 months). There were no dehiscences and no infections, and no complaints of thermal conduction. Conclusions: The proposed CeTi cranial implant combines the strength of titanium implants with the biological integration potential of ceramic implants and seems particularly resistant to infection, probably due to the biofunctionalized titanium surface and the antimicrobial activity of elevated intracellular free calcium levels.


2008 ◽  
Vol 47-50 ◽  
pp. 1387-1390 ◽  
Author(s):  
Xiang Ge ◽  
Fu Zeng Ren ◽  
Yang Leng

Percutaneous type of orthopedic and dental implants requires not only a good adhesion with bone, but also the ability to form good attachment and seal with connective tissues and skins. Currently, the skin-seal of such implants still remains as a problem to be resolved. Electrochemical processing was used to modify the surface of titanium implants in order to improve the ability of anti-bacteria infection and skin seal around the implants by synthesizing a fluoridated calcium phosphate thin film on titanium substrate. The surface of titanium was cathodically treated in an electrochemical cell. A thin film of about 80 nm thickness was deposited on the titanium surface by controlling the treatment parameters. The dense and gel-like film was composed of calcium phosphate and fluorine ions. Fluorine ion has the anti-bacteria property and could help to improve the skin seal around the percutaneous device. The electrochemical method of fluoridated calcium phosphate thin film synthesis will provide an alternative method for surface treatment of orthopedic and dental implants.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 692 ◽  
Author(s):  
Ionela Andreea Neacsu ◽  
Laura Vasilica Arsenie ◽  
Roxana Trusca ◽  
Ioana Lavinia Ardelean ◽  
Natalia Mihailescu ◽  
...  

Synthesis of biomimetic materials for implants and prostheses is a hot topic in nanobiotechnology strategies. Today the major approach of orthopaedic implants in hard tissue engineering is represented by titanium implants. A comparative study of hybrid thin coatings deposition was performed by spin coating and matrix-assisted pulsed laser evaporation (MAPLE) onto titanium substrates. The Collagen-calcium phosphate (Coll-CaPs) combination was selected as the best option to mimic natural bone tissue. To accelerate the mineralization process, Zn2+ ions were inserted by substitution in CaPs. A superior thin film homogeneity was assessed by MAPLE, as shown by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) microscopy. A decrease of P-O and amide absorbance bands was observed as a consequence of different Zn2+ amounts. A variety of structural modifications of the apatite layer are then generated, which influenced the confinement process towards the collagen template. The in-vitro Simulated Body Fluid (SBF) assay demonstrated the ability of Coll/Zn2+-CaPs coatings to stimulate the mineralization process as a result of synergic effects in the collagen-Zn2+ substituted apatite. For both deposition methods, the formation of droplets associated to the growth of CaPs particulates inside the collagen matrix was visualized. This supports the prospective behavior of MAPLE biomimetic coatings to induce mineralization, as an essential step of fast implant integration with vivid tissues.


2014 ◽  
Vol 26 (10) ◽  
pp. 1215-1221 ◽  
Author(s):  
Arwa Alsayed ◽  
Sukumaran Anil ◽  
John A. Jansen ◽  
Jeroen J. J. P. van den Beucken

Biomaterials ◽  
2004 ◽  
Vol 25 (14) ◽  
pp. 2901-2910 ◽  
Author(s):  
Florence Barrere ◽  
Margot M.E. Snel ◽  
Clemens A. van Blitterswijk ◽  
Klaas de Groot ◽  
Pierre Layrolle

Sign in / Sign up

Export Citation Format

Share Document