The Impact of Major Alloying Elements and Refiner on the SDAS of Al-Si-Cu Alloy

2009 ◽  
Vol 46 (2) ◽  
pp. 97-114 ◽  
Author(s):  
Mile Djurdjevic ◽  
Jelena Pavlovic ◽  
Glenn Byczynski
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 708
Author(s):  
Li Zhou ◽  
Yajun Luo ◽  
Zhenlin Zhang ◽  
Min He ◽  
Yinao Xu ◽  
...  

In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting imposed with annular electromagnetic stirring and intercooling; a process named uniform direct chill casting. The effects of uniform direct chill casting on grain size and the alloying element distribution of the billets were investigated and compared with those of the normal direct chill casting method. The results show that the microstructures were refined and the homogeneity of the alloying elements distribution was greatly improved by imposing the annular electromagnetic stirring and intercooling. In uniform direct chill casting, explosive nucleation can be triggered, originating from the mold wall and dendrite fragments for grain refinement. The effects of electromagnetic stirring on macrosegregation are discussed with consideration of the centrifugal force that drives the movement of melt from the central part towards the upper-periphery part, which could suppress the macrosegregation of alloying elements. The refined grain can reduce the permeability of the melt in the mushy zone that can restrain macrosegregation.


1999 ◽  
Vol 564 ◽  
Author(s):  
K. Barmak ◽  
G. A. Lucadamo ◽  
C. Cabral ◽  
C. Lavoie ◽  
J. M. E. Harper

AbstractWe have found the dissociation behavior of immiscible Cu-alloy thin films to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. The motivation for these studies was to use the energy released by the dissociation of an immiscible alloy, in addition to other driving forces commonly found in thin films and lines, to promote grain growth and texture evolution. In this work, the dissociation behavior of eight dilute (3.3 ± 0.5 at% solute) binary Cu-systems was investigated, with five alloying elements selected from group VB and VIB, two from group VillA, and one from group 1B. These alloying elements are respectively V, Nb, Ta, Cr, Mo, Fe, Ru and Ag. Several experimental techniques, including in situ resistance and stress measurements as well as in situ synchrotron x-ray diffraction, were used to follow the progress of solute precipitation in approximately 500 nm thick films. In addition, transmission electron microscopy was used to investigate the evolution of microstructure of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure and texture often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900°C. However, in most cases, substantial reduction in resistivity of the films took place at temperatures of interest to metallization schemes, namely below 400°C.


2007 ◽  
Vol 353-358 ◽  
pp. 433-437 ◽  
Author(s):  
Qiao Yan Sun ◽  
Lin Xiao ◽  
Jun Sun

In present paper effect of alloying elements and strengthening particle on the impact toughness were investigated. Load and energy in the impact tests were also discussed in detail for Ti-2Al, Ti-2Sn,Ti-2Zr, Ti-1Mo and Ti/TiC. Impact tests were carried out at room temperature (293K) and low temperature (83K) using a 300J capacity impact machine. Ti-1Mo, Ti-2Zr,Ti-2Sn alloys exhibit high impact toughness even at low temperature, while Ti-2Al and Ti/TiC only have high toughness at room temperature. At room temperature, general yielding occurred in all the materials, but it occurred only in Ti-1Mo, Ti-2Zr and Ti-2Sn at low temperature. It seemed that strengthening titanium couldn’t affect the elastic energy (Ei) effectively, but bring about more changes to Ep (propagation energy of crack) than to Ei (initiation energy of crack). As for the effect of alloying elements on the impact toughness, it seems to be related to the comprehensive result of the concentration and electronegative property of alloying elements. The interface between the TiC particles and matrix resulted in low toughness, especially at cryogenic temperature.


DENKI-SEIKO ◽  
1988 ◽  
Vol 59 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Kunio Namiki ◽  
Tomohito Iikubo

Author(s):  
Victor Adrian Chiriac ◽  
Tien-Yu Tom Lee

An extensive 3-D conjugate numerical study is conducted to assess the thermal performance of the novel 54 lead SOIC (with inverted exposed Cu pad) packages for automotive applications. The thermal performance of the modified designs with exposed pad are investigated, ranging from smaller die/flag size to larger ones, with single or multiple heat sources operating under various powering conditions. The thermal performance is compared to other existing packages with typical application to the automotive industry. The impact of the lead frame geometrical structure and die attach material on the overall thermal behavior is evaluated. Under one steady state (4W) operating scenario, the package reaches a peak temperature of 117.1°C, corresponding to a junction-to-heatsink thermal resistance Rjhs of 4.27°C/W. For the design with a slightly smaller Cu alloy exposed pad (Cu Alloy), the peak temperature reached by the FETs is 117.8°C, slightly higher than for the design with the intermediate size flag. In this case, the junction-to-heatsink thermal resistance Rj-hs is 4.45°C/W. The worst case powering scenario is identified, with 1.312W/FET and total power of 10.5W, barely satisfying the overall thermal budget. The variation of the peak (junction) temperature is also evaluated for several powering scenarios. Finally, a comparison with a different exposed pad package is made. The impact of the higher thermal conductivity (solder) die attach is evaluated and compared to the epoxy die attach in the 54 lead SOIC package. Several cases are evaluated in the paper, with an emphasis on the superior thermal performance of new packages for automotive applications.


2019 ◽  
Vol 19 (1) ◽  
pp. 114-126
Author(s):  
Krzysztof Regulski ◽  
Dorota Wilk-Kołodziejczyk ◽  
Stanisława Kluska-Nawarecka ◽  
Tomasz Szymczak ◽  
Grzegorz Gumienny ◽  
...  
Keyword(s):  

Author(s):  
D.I. Tsamroh ◽  
P. Puspitasari ◽  
A. Andoko ◽  
A.A. Permanasari ◽  
P.E. Setyawan

Purpose: This research is aimed to describe heat treatment process by using multistage artificial aging for Al-Cu alloy with Taguchi method in Minitab 16 to optimize the heat treatment parameters. This research conducted due to the applied of aluminium alloy in automotive industrial and aircraft industrial that has good properties for fabrication. Design/methodology/approach: Methodology that use in this paper is experimental design with statistical approach. Three controllable parameters were selected, they were temperature aging, holding time of aging, and the number of stages. The hardness value and impact value after multistage artificial aging were chosen as quality characteristics. The experiment was performed using orthogonal arrays of L9 (33). Findings: The finding that resulted in this research are the most significant parameters that affected hardness and toughness value of Al-Cu alloy against multistage artificial aging. The optimal hardness and toughness for Al-Cu alloy were obtained with heat treatment at temperature 200ºC, holding time for 6 hours, with two stages artificial aging. Research limitations/implications: The limitation that found in this research is even optimal level had been determined, it is unable to determine the true optimal value of each design parameters. Practical implications: This optimization process can be applied in manufacture process in industrial without spend expensive cost and time. Originality/value: According to research result, can be understood that by conducting these experiments, the impact value and the hardness value of Al-Cu alloy increase with multistage artificial aging treatment.


2019 ◽  
Vol 944 ◽  
pp. 155-162
Author(s):  
Ming Guang Wang ◽  
Shan Jiang

Dendrite growth of Ni-0.4083%Cu alloy was simulated by the phase-field method in the paper. The impact of super-cooling degree and super-saturation degree and solute segregation on dendrite growth was studied systematically. solute segregation increased initially then tended to decrease. The increase of super-saturation can promote the growth of lateral branch and destroy the constancy of the dendrite tip at the same time. The simulation result was compared with the microscopic theory and they have a good agreement.


2019 ◽  
Vol 161 ◽  
pp. 309-320 ◽  
Author(s):  
G. Bonny ◽  
C. Domain ◽  
N. Castin ◽  
P. Olsson ◽  
L. Malerba

Sign in / Sign up

Export Citation Format

Share Document