Effect of Flow Induced Orientation of Carbon Nanotubes on the Capillary Extrusion Behavior of Low-Density Polyethylene

2017 ◽  
Vol 32 (1) ◽  
pp. 3-10 ◽  
Author(s):  
H. Uematsu ◽  
T. Natsuume ◽  
S. Tanoue ◽  
Y. Iemoto
2011 ◽  
Vol 43 (6) ◽  
pp. 543-558 ◽  
Author(s):  
Z. Chen ◽  
S. Chen ◽  
J. Zhang

The surfactant, sodium dodecylbenzenesulfonate (NaDDBS) and coupling agents, γ-aminopropyltriethoxy sliane (KH550) and isopropyl dioleic(dioctylphosphate) titanate (NDZ101) were used to treat multiwalled carbon nanotubes in this work. The effects of surface modification of multiwalled carbon nanotubes on crystallization behavior, mechanical properties, and electrical properties of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites were studied. The results showed that NaDDBS, KH550, and NDZ101 had a favorable effect of improving the dispersion of multiwalled carbon nanotubes, but it cannot improve the interfacial interactionbetween multiwalled carbon nanotubes and the matrix. The improvement in dispersion favored the crystallization behavior and mechanical properties. Modified multiwalled carbon nanotubes had a better acceleration nucleation effect than raw multiwalled carbon nanotubes on low density polyethylene/polyolefin elastomer blends at low content (≤1 wt%). The tensile strength of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites with modified multiwalled carbon nanotubes increased with lower multiwalled carbon nanotubes content (≤1 wt%), and KH550 and NDZ101 led low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites to possess a higher tensile strength than that of NaDDBS with 1 wt% content. NaDDBS, KH550, and NDZ101 had a minor influence on the dielectric properties of the composites and even caused a decrease in the dielectric loss of composites with 10 wt% multiwalled carbon nanotubes content.


Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Daniel Dobrea ◽  
Dan Catalin Birsan

In this paper, we investigated the effect of injection molding parameters such as melt temperature, mold temperature, injection speed and holding pressure on the mechanical properties of low density polyethylene reinforced with 2.5 wt% multi-walled carbon nanotubes. The Taguchi methodology with four factors and two levels was used for the design of the injection molding experiments. The mechanical properties were evaluated by tensile tests in the flow direction at room temperature (23 °C) at crosshead speeds of 1 and 5 mm/min. It was found that the mechanical properties can be modified by manipulating the injection molding parameters. The Young’s modulus of the LDPE-MWNTs composite decreased as the melt temperature increased, while mold temperature, injection molding speed and holding pressure have a moderate influence on the Young’s modulus.


2016 ◽  
Vol 39 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Dilip Depan ◽  
Brittany Hebert ◽  
Andrew Conlin ◽  
William Chirdon ◽  
Ahmed Khattab

Sign in / Sign up

Export Citation Format

Share Document