Application of Lock-in Thermography on PCB for Fault Localization and Validation of Failure Mechanism Due to External Discrete Component Variation

Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.

Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


2021 ◽  
Author(s):  
Carles Ribas Tugores ◽  
Gerald Birngruber ◽  
Jürgen Fluch ◽  
Angelika Swatek ◽  
Gerald Schweiger

Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 19
Author(s):  
Bushra Jalil ◽  
Bilal Hussain ◽  
Maria Pascali ◽  
Giovanni Serafino ◽  
Davide Moroni ◽  
...  

Microwave photonic systems are more susceptible to thermal fluctuations due to thermo-optic effect. In order to stabilize the performance of photonic components, thermal monitoring is achieved by using thermistors placed at any arbitrary location along the component. This work presents non contact thermography of a fully functional microwave photonic system. The temperature profile of printed circuit board (PCB) and photonic integrated circuit (PIC) is obtained using Fluke FLIR (A65) camera. We performed Otsu’s thresholding to segment heat centers located across PCB as well as PIC. The infrared and visible cameras used in this work have different field of view, therefore, after applying morphological methods, we performed image registration to synchronize both visible and thermal images. We demonstrate this method on the circuit board with active electrical/photonic elements and were able to observe thermal profile of these components.


Author(s):  
Sharon A. Myers ◽  
Troy D. Cognata ◽  
Hugh Gotts

Logic boards were failing at Enhanced Mac Minus One (EMMO) test or Integrated Circuit Test (ICT) after printed circuit board (PCB) rework. The failure to boot was originally traced to a suspected bad microcontroller chip. Replacing this chip, or an oscillator tied to the microcontroller circuit, did not consistently solve the boot problem. With further testing, it was found the microcontroller circuit was very sensitive to resistance and was essentially shorted.A resistor in the microcontroller circuit was identified on the flip side of the PCB. Several areas on the board, including the resistor R161, were seen to have a slight white haze/ low gloss appearance on the surface of the PCB. To test if the residue was electrically conductive, five boards were selected whose sole failure was R161. The resistance of the individual resistors was measured with a digital multimeter (DMM). The resistor was then cleaned with isopropyl alcohol and a cotton swab. Each board was retested at ICT and the individual resistors measured again with a DMM. Cleaning the area surrounding the resistor with isopropyl alcohol, corrected the failure four of the times.


Author(s):  
Frank Toth ◽  
Gary F. Shade

Abstract Printed Circuit Board (PCB) assemblies are moving toward lead-free (LF) alloys and away from the traditional Sn-Pb alloy [1]. This change is creating new and unique failure modes as the process adapts to accommodate the higher temperatures of the new process [2]. In addition, mis-processed lots are more likely due to the complexity of assembling a mix of Sn-Pb and leadfree solders, components, PCBs, solder pastes, and fluxes. This case study helps to highlight the challenge and provides an example of what can happen, how to detect it, and how the defects can cause reliability failures.


Author(s):  
Hsien-chen Li ◽  
Fuyau Lin

Abstract This paper present an approach to apply Design by Experiments for process improvement with the objectives to minimize cost and shorten investigation time. A case study of PCB (Printed Circuit Board) manufacturing process is chosen to illustrate this approach. A Fractional Factorial Design by Experiment was performed due to the constraints of the time, budget, and resources.


Sign in / Sign up

Export Citation Format

Share Document